- Language: en
Query Expressions¶
Query expressions describe a value or a computation that can be used as part of an update, create, filter, order by, annotation, or aggregate. When an expression outputs a boolean value, it may be used directly in filters. There are a number of built-in expressions (documented below) that can be used to help you write queries. Expressions can be combined, or in some cases nested, to form more complex computations.
Supported arithmetic¶
Django supports negation, addition, subtraction, multiplication, division, modulo arithmetic, and the power operator on query expressions, using Python constants, variables, and even other expressions.
Output field¶
Many of the expressions documented in this section support an optional
output_field
parameter. If given, Django will load the value into that
field after retrieving it from the database.
output_field
takes a model field instance, like IntegerField()
or
BooleanField()
. Usually, the field doesn’t need any arguments, like
max_length
, since field arguments relate to data validation which will not
be performed on the expression’s output value.
output_field
is only required when Django is unable to automatically
determine the result’s field type, such as complex expressions that mix field
types. For example, adding a DecimalField()
and a FloatField()
requires
an output field, like output_field=FloatField()
.
Some examples¶
>>> from django.db.models import Count, F, Value
>>> from django.db.models.functions import Length, Upper
>>> from django.db.models.lookups import GreaterThan
# Find companies that have more employees than chairs.
>>> Company.objects.filter(num_employees__gt=F("num_chairs"))
# Find companies that have at least twice as many employees
# as chairs. Both the querysets below are equivalent.
>>> Company.objects.filter(num_employees__gt=F("num_chairs") * 2)
>>> Company.objects.filter(num_employees__gt=F("num_chairs") + F("num_chairs"))
# How many chairs are needed for each company to seat all employees?
>>> company = (
... Company.objects.filter(num_employees__gt=F("num_chairs"))
... .annotate(chairs_needed=F("num_employees") - F("num_chairs"))
... .first()
... )
>>> company.num_employees
120
>>> company.num_chairs
50
>>> company.chairs_needed
70
# Create a new company using expressions.
>>> company = Company.objects.create(name="Google", ticker=Upper(Value("goog")))
# Be sure to refresh it if you need to access the field.
>>> company.refresh_from_db()
>>> company.ticker
'GOOG'
# Annotate models with an aggregated value. Both forms
# below are equivalent.
>>> Company.objects.annotate(num_products=Count("products"))
>>> Company.objects.annotate(num_products=Count(F("products")))
# Aggregates can contain complex computations also
>>> Company.objects.annotate(num_offerings=Count(F("products") + F("services")))
# Expressions can also be used in order_by(), either directly
>>> Company.objects.order_by(Length("name").asc())
>>> Company.objects.order_by(Length("name").desc())
# or using the double underscore lookup syntax.
>>> from django.db.models import CharField
>>> from django.db.models.functions import Length
>>> CharField.register_lookup(Length)
>>> Company.objects.order_by("name__length")
# Boolean expression can be used directly in filters.
>>> from django.db.models import Exists, OuterRef
>>> Company.objects.filter(
... Exists(Employee.objects.filter(company=OuterRef("pk"), salary__gt=10))
... )
# Lookup expressions can also be used directly in filters
>>> Company.objects.filter(GreaterThan(F("num_employees"), F("num_chairs")))
# or annotations.
>>> Company.objects.annotate(
... need_chairs=GreaterThan(F("num_employees"), F("num_chairs")),
... )
Built-in Expressions¶
Note
These expressions are defined in django.db.models.expressions
and
django.db.models.aggregates
, but for convenience they’re available and
usually imported from django.db.models
.
F()
expressions¶
An F()
object represents the value of a model field, transformed value of a
model field, or annotated column. It makes it possible to refer to model field
values and perform database operations using them without actually having to
pull them out of the database into Python memory.
Instead, Django uses the F()
object to generate an SQL expression that
describes the required operation at the database level.
Let’s try this with an example. Normally, one might do something like this:
# Tintin filed a news story!
reporter = Reporters.objects.get(name="Tintin")
reporter.stories_filed += 1
reporter.save()
Here, we have pulled the value of reporter.stories_filed
from the database
into memory and manipulated it using familiar Python operators, and then saved
the object back to the database. But instead we could also have done:
from django.db.models import F
reporter = Reporters.objects.get(name="Tintin")
reporter.stories_filed = F("stories_filed") + 1
reporter.save()
Although reporter.stories_filed = F('stories_filed') + 1
looks like a
normal Python assignment of value to an instance attribute, in fact it’s an SQL
construct describing an operation on the database.
When Django encounters an instance of F()
, it overrides the standard Python
operators to create an encapsulated SQL expression; in this case, one which
instructs the database to increment the database field represented by
reporter.stories_filed
.
Whatever value is or was on reporter.stories_filed
, Python never gets to
know about it - it is dealt with entirely by the database. All Python does,
through Django’s F()
class, is create the SQL syntax to refer to the field
and describe the operation.
To access the new value saved this way, the object must be reloaded:
reporter = Reporters.objects.get(pk=reporter.pk)
# Or, more succinctly:
reporter.refresh_from_db()
As well as being used in operations on single instances as above, F()
can
be used on QuerySets
of object instances, with update()
. This reduces
the two queries we were using above - the get()
and the
save()
- to just one:
reporter = Reporters.objects.filter(name="Tintin")
reporter.update(stories_filed=F("stories_filed") + 1)
We can also use update()
to increment
the field value on multiple objects - which could be very much faster than
pulling them all into Python from the database, looping over them, incrementing
the field value of each one, and saving each one back to the database:
Reporter.objects.update(stories_filed=F("stories_filed") + 1)
F()
therefore can offer performance advantages by:
getting the database, rather than Python, to do work
reducing the number of queries some operations require
Slicing F()
expressions¶
For string-based fields, text-based fields, and
ArrayField
, you can use Python’s
array-slicing syntax. The indices are 0-based and the step
argument to
slice
is not supported. For example:
>>> # Replacing a name with a substring of itself.
>>> writer = Writers.objects.get(name="Priyansh")
>>> writer.name = F("name")[1:5]
>>> writer.save()
>>> writer.refresh_from_db()
>>> writer.name
'riya'
Avoiding race conditions using F()
¶
Another useful benefit of F()
is that having the database - rather than
Python - update a field’s value avoids a race condition.
If two Python threads execute the code in the first example above, one thread could retrieve, increment, and save a field’s value after the other has retrieved it from the database. The value that the second thread saves will be based on the original value; the work of the first thread will be lost.
If the database is responsible for updating the field, the process is more
robust: it will only ever update the field based on the value of the field in
the database when the save()
or update()
is executed, rather
than based on its value when the instance was retrieved.
F()
assignments persist after Model.save()
¶
F()
objects assigned to model fields persist after saving the model
instance and will be applied on each save()
. For example:
reporter = Reporters.objects.get(name="Tintin")
reporter.stories_filed = F("stories_filed") + 1
reporter.save()
reporter.name = "Tintin Jr."
reporter.save()
stories_filed
will be updated twice in this case. If it’s initially 1
,
the final value will be 3
. This persistence can be avoided by reloading the
model object after saving it, for example, by using
refresh_from_db()
.
Using F()
in filters¶
F()
is also very useful in QuerySet
filters, where they make it
possible to filter a set of objects against criteria based on their field
values, rather than on Python values.
This is documented in using F() expressions in queries.
Using F()
with annotations¶
F()
can be used to create dynamic fields on your models by combining
different fields with arithmetic:
company = Company.objects.annotate(chairs_needed=F("num_employees") - F("num_chairs"))
If the fields that you’re combining are of different types you’ll need to tell
Django what kind of field will be returned. Most expressions support
output_field for this case, but since F()
does not, you
will need to wrap the expression with ExpressionWrapper
:
from django.db.models import DateTimeField, ExpressionWrapper, F
Ticket.objects.annotate(
expires=ExpressionWrapper(
F("active_at") + F("duration"), output_field=DateTimeField()
)
)
When referencing relational fields such as ForeignKey
, F()
returns the
primary key value rather than a model instance:
>>> car = Company.objects.annotate(built_by=F("manufacturer"))[0]
>>> car.manufacturer
<Manufacturer: Toyota>
>>> car.built_by
3
Using F()
to sort null values¶
Use F()
and the nulls_first
or nulls_last
keyword argument to
Expression.asc()
or desc()
to control the ordering of
a field’s null values. By default, the ordering depends on your database.
For example, to sort companies that haven’t been contacted (last_contacted
is null) after companies that have been contacted:
from django.db.models import F
Company.objects.order_by(F("last_contacted").desc(nulls_last=True))
Using F()
with logical operations¶
F()
expressions that output BooleanField
can be logically negated with
the inversion operator ~F()
. For example, to swap the activation status of
companies:
from django.db.models import F
Company.objects.update(is_active=~F("is_active"))
Func()
expressions¶
Func()
expressions are the base type of all expressions that involve
database functions like COALESCE
and LOWER
, or aggregates like SUM
.
They can be used directly:
from django.db.models import F, Func
queryset.annotate(field_lower=Func(F("field"), function="LOWER"))
or they can be used to build a library of database functions:
class Lower(Func):
function = "LOWER"
queryset.annotate(field_lower=Lower("field"))
But both cases will result in a queryset where each model is annotated with an
extra attribute field_lower
produced, roughly, from the following SQL:
SELECT
...
LOWER("db_table"."field") as "field_lower"
See Database Functions for a list of built-in database functions.
The Func
API is as follows:
- class Func(*expressions, **extra)[source]¶
- function¶
A class attribute describing the function that will be generated. Specifically, the
function
will be interpolated as thefunction
placeholder withintemplate
. Defaults toNone
.
- template¶
A class attribute, as a format string, that describes the SQL that is generated for this function. Defaults to
'%(function)s(%(expressions)s)'
.If you’re constructing SQL like
strftime('%W', 'date')
and need a literal%
character in the query, quadruple it (%%%%
) in thetemplate
attribute because the string is interpolated twice: once during the template interpolation inas_sql()
and once in the SQL interpolation with the query parameters in the database cursor.
- arg_joiner¶
A class attribute that denotes the character used to join the list of
expressions
together. Defaults to', '
.
- arity¶
A class attribute that denotes the number of arguments the function accepts. If this attribute is set and the function is called with a different number of expressions,
TypeError
will be raised. Defaults toNone
.
- as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)[source]¶
Generates the SQL fragment for the database function. Returns a tuple
(sql, params)
, wheresql
is the SQL string, andparams
is the list or tuple of query parameters.The
as_vendor()
methods should use thefunction
,template
,arg_joiner
, and any other**extra_context
parameters to customize the SQL as needed. For example:class ConcatPair(Func): ... function = "CONCAT" ... def as_mysql(self, compiler, connection, **extra_context): return super().as_sql( compiler, connection, function="CONCAT_WS", template="%(function)s('', %(expressions)s)", **extra_context )
To avoid an SQL injection vulnerability,
extra_context
must not contain untrusted user input as these values are interpolated into the SQL string rather than passed as query parameters, where the database driver would escape them.
The *expressions
argument is a list of positional expressions that the
function will be applied to. The expressions will be converted to strings,
joined together with arg_joiner
, and then interpolated into the template
as the expressions
placeholder.
Positional arguments can be expressions or Python values. Strings are
assumed to be column references and will be wrapped in F()
expressions
while other values will be wrapped in Value()
expressions.
The **extra
kwargs are key=value
pairs that can be interpolated
into the template
attribute. To avoid an SQL injection vulnerability,
extra
must not contain untrusted user input as these values are interpolated
into the SQL string rather than passed as query parameters, where the database
driver would escape them.
The function
, template
, and arg_joiner
keywords can be used to
replace the attributes of the same name without having to define your own
class. output_field can be used to define the expected
return type.
Aggregate()
expressions¶
An aggregate expression is a special case of a Func() expression that informs the query that a GROUP BY
clause
is required. All of the aggregate functions,
like Sum()
and Count()
, inherit from Aggregate()
.
Since Aggregate
s are expressions and wrap expressions, you can represent
some complex computations:
from django.db.models import Count
Company.objects.annotate(
managers_required=(Count("num_employees") / 4) + Count("num_managers")
)
The Aggregate
API is as follows:
- class Aggregate(*expressions, output_field=None, distinct=False, filter=None, default=None, **extra)[source]¶
- template¶
A class attribute, as a format string, that describes the SQL that is generated for this aggregate. Defaults to
'%(function)s(%(distinct)s%(expressions)s)'
.
- function¶
A class attribute describing the aggregate function that will be generated. Specifically, the
function
will be interpolated as thefunction
placeholder withintemplate
. Defaults toNone
.
- window_compatible¶
Defaults to
True
since most aggregate functions can be used as the source expression inWindow
.
- allow_distinct¶
A class attribute determining whether or not this aggregate function allows passing a
distinct
keyword argument. If set toFalse
(default),TypeError
is raised ifdistinct=True
is passed.
- empty_result_set_value¶
Defaults to
None
since most aggregate functions result inNULL
when applied to an empty result set.
The expressions
positional arguments can include expressions, transforms of
the model field, or the names of model fields. They will be converted to a
string and used as the expressions
placeholder within the template
.
The distinct
argument determines whether or not the aggregate function
should be invoked for each distinct value of expressions
(or set of
values, for multiple expressions
). The argument is only supported on
aggregates that have allow_distinct
set to True
.
The filter
argument takes a Q object
that’s
used to filter the rows that are aggregated. See Conditional aggregation
and Filtering on annotations for example usage.
The default
argument takes a value that will be passed along with the
aggregate to Coalesce
. This is useful for
specifying a value to be returned other than None
when the queryset (or
grouping) contains no entries.
The **extra
kwargs are key=value
pairs that can be interpolated
into the template
attribute.
Creating your own Aggregate Functions¶
You can create your own aggregate functions, too. At a minimum, you need to
define function
, but you can also completely customize the SQL that is
generated. Here’s a brief example:
from django.db.models import Aggregate
class Sum(Aggregate):
# Supports SUM(ALL field).
function = "SUM"
template = "%(function)s(%(all_values)s%(expressions)s)"
allow_distinct = False
arity = 1
def __init__(self, expression, all_values=False, **extra):
super().__init__(expression, all_values="ALL " if all_values else "", **extra)
Value()
expressions¶
A Value()
object represents the smallest possible component of an
expression: a simple value. When you need to represent the value of an integer,
boolean, or string within an expression, you can wrap that value within a
Value()
.
You will rarely need to use Value()
directly. When you write the expression
F('field') + 1
, Django implicitly wraps the 1
in a Value()
,
allowing simple values to be used in more complex expressions. You will need to
use Value()
when you want to pass a string to an expression. Most
expressions interpret a string argument as the name of a field, like
Lower('name')
.
The value
argument describes the value to be included in the expression,
such as 1
, True
, or None
. Django knows how to convert these Python
values into their corresponding database type.
If no output_field is specified, it will be inferred from
the type of the provided value
for many common types. For example, passing
an instance of datetime.datetime
as value
defaults
output_field
to DateTimeField
.
ExpressionWrapper()
expressions¶
ExpressionWrapper
surrounds another expression and provides access to
properties, such as output_field, that may not be
available on other expressions. ExpressionWrapper
is necessary when using
arithmetic on F()
expressions with different types as described in
Using F() with annotations.
Conditional expressions¶
Conditional expressions allow you to use if
… elif
…
else
logic in queries. Django natively supports SQL CASE
expressions. For more details see Conditional Expressions.
Subquery()
expressions¶
You can add an explicit subquery to a QuerySet
using the Subquery
expression.
For example, to annotate each post with the email address of the author of the newest comment on that post:
>>> from django.db.models import OuterRef, Subquery
>>> newest = Comment.objects.filter(post=OuterRef("pk")).order_by("-created_at")
>>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values("email")[:1]))
On PostgreSQL, the SQL looks like:
SELECT "post"."id", (
SELECT U0."email"
FROM "comment" U0
WHERE U0."post_id" = ("post"."id")
ORDER BY U0."created_at" DESC LIMIT 1
) AS "newest_commenter_email" FROM "post"
Note
The examples in this section are designed to show how to force Django to execute a subquery. In some cases it may be possible to write an equivalent queryset that performs the same task more clearly or efficiently.
Referencing columns from the outer queryset¶
Use OuterRef
when a queryset in a Subquery
needs to refer to a field
from the outer query or its transform. It acts like an F
expression
except that the check to see if it refers to a valid field isn’t made until the
outer queryset is resolved.
Instances of OuterRef
may be used in conjunction with nested instances
of Subquery
to refer to a containing queryset that isn’t the immediate
parent. For example, this queryset would need to be within a nested pair of
Subquery
instances to resolve correctly:
>>> Book.objects.filter(author=OuterRef(OuterRef("pk")))
Limiting a subquery to a single column¶
There are times when a single column must be returned from a Subquery
, for
instance, to use a Subquery
as the target of an __in
lookup. To return
all comments for posts published within the last day:
>>> from datetime import timedelta
>>> from django.utils import timezone
>>> one_day_ago = timezone.now() - timedelta(days=1)
>>> posts = Post.objects.filter(published_at__gte=one_day_ago)
>>> Comment.objects.filter(post__in=Subquery(posts.values("pk")))
In this case, the subquery must use values()
to return only a single column: the primary key of the post.
Limiting the subquery to a single row¶
To prevent a subquery from returning multiple rows, a slice ([:1]
) of the
queryset is used:
>>> subquery = Subquery(newest.values("email")[:1])
>>> Post.objects.annotate(newest_commenter_email=subquery)
In this case, the subquery must only return a single column and a single row: the email address of the most recently created comment.
(Using get()
instead of a slice would fail because the
OuterRef
cannot be resolved until the queryset is used within a
Subquery
.)
Exists()
subqueries¶
Exists
is a Subquery
subclass that uses an SQL EXISTS
statement. In
many cases it will perform better than a subquery since the database is able to
stop evaluation of the subquery when a first matching row is found.
For example, to annotate each post with whether or not it has a comment from within the last day:
>>> from django.db.models import Exists, OuterRef
>>> from datetime import timedelta
>>> from django.utils import timezone
>>> one_day_ago = timezone.now() - timedelta(days=1)
>>> recent_comments = Comment.objects.filter(
... post=OuterRef("pk"),
... created_at__gte=one_day_ago,
... )
>>> Post.objects.annotate(recent_comment=Exists(recent_comments))
On PostgreSQL, the SQL looks like:
SELECT "post"."id", "post"."published_at", EXISTS(
SELECT (1) as "a"
FROM "comment" U0
WHERE (
U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
U0."post_id" = "post"."id"
)
LIMIT 1
) AS "recent_comment" FROM "post"
It’s unnecessary to force Exists
to refer to a single column, since the
columns are discarded and a boolean result is returned. Similarly, since
ordering is unimportant within an SQL EXISTS
subquery and would only
degrade performance, it’s automatically removed.
You can query using NOT EXISTS
with ~Exists()
.
Filtering on a Subquery()
or Exists()
expressions¶
Subquery()
that returns a boolean value and Exists()
may be used as a
condition
in When
expressions, or to
directly filter a queryset:
>>> recent_comments = Comment.objects.filter(...) # From above
>>> Post.objects.filter(Exists(recent_comments))
This will ensure that the subquery will not be added to the SELECT
columns,
which may result in a better performance.
Using aggregates within a Subquery
expression¶
Aggregates may be used within a Subquery
, but they require a specific
combination of filter()
, values()
, and
annotate()
to get the subquery grouping correct.
Assuming both models have a length
field, to find posts where the post
length is greater than the total length of all combined comments:
>>> from django.db.models import OuterRef, Subquery, Sum
>>> comments = Comment.objects.filter(post=OuterRef("pk")).order_by().values("post")
>>> total_comments = comments.annotate(total=Sum("length")).values("total")
>>> Post.objects.filter(length__gt=Subquery(total_comments))
The initial filter(...)
limits the subquery to the relevant parameters.
order_by()
removes the default ordering
(if any) on the Comment
model. values('post')
aggregates comments by
Post
. Finally, annotate(...)
performs the aggregation. The order in
which these queryset methods are applied is important. In this case, since the
subquery must be limited to a single column, values('total')
is required.
This is the only way to perform an aggregation within a Subquery
, as
using aggregate()
attempts to evaluate the queryset (and if
there is an OuterRef
, this will not be possible to resolve).
Raw SQL expressions¶
Sometimes database expressions can’t easily express a complex WHERE
clause.
In these edge cases, use the RawSQL
expression. For example:
>>> from django.db.models.expressions import RawSQL
>>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (param,)))
These extra lookups may not be portable to different database engines (because you’re explicitly writing SQL code) and violate the DRY principle, so you should avoid them if possible.
RawSQL
expressions can also be used as the target of __in
filters:
>>> queryset.filter(id__in=RawSQL("select id from sometable where col = %s", (param,)))
Warning
To protect against SQL injection attacks, you must escape any
parameters that the user can control by using params
. params
is a
required argument to force you to acknowledge that you’re not interpolating
your SQL with user-provided data.
You also must not quote placeholders in the SQL string. This example is
vulnerable to SQL injection because of the quotes around %s
:
RawSQL("select col from sometable where othercol = '%s'") # unsafe!
You can read more about how Django’s SQL injection protection works.
Window functions¶
Window functions provide a way to apply functions on partitions. Unlike a normal aggregation function which computes a final result for each set defined by the group by, window functions operate on frames and partitions, and compute the result for each row.
You can specify multiple windows in the same query which in Django ORM would be equivalent to including multiple expressions in a QuerySet.annotate() call. The ORM doesn’t make use of named windows, instead they are part of the selected columns.
- class Window(expression, partition_by=None, order_by=None, frame=None, output_field=None)[source]¶
- template¶
Defaults to
%(expression)s OVER (%(window)s)
. If only theexpression
argument is provided, the window clause will be blank.
The Window
class is the main expression for an OVER
clause.
The expression
argument is either a window function, an aggregate function, or
an expression that’s compatible in a window clause.
The partition_by
argument accepts an expression or a sequence of
expressions (column names should be wrapped in an F
-object) that control
the partitioning of the rows. Partitioning narrows which rows are used to
compute the result set.
The output_field is specified either as an argument or by the expression.
The order_by
argument accepts an expression on which you can call
asc()
and
desc()
, a string of a field name (with an
optional "-"
prefix which indicates descending order), or a tuple or list
of strings and/or expressions. The ordering controls the order in which the
expression is applied. For example, if you sum over the rows in a partition,
the first result is the value of the first row, the second is the sum of first
and second row.
The frame
parameter specifies which other rows that should be used in the
computation. See Frames for details.
For example, to annotate each movie with the average rating for the movies by the same studio in the same genre and release year:
>>> from django.db.models import Avg, F, Window
>>> Movie.objects.annotate(
... avg_rating=Window(
... expression=Avg("rating"),
... partition_by=[F("studio"), F("genre")],
... order_by="released__year",
... ),
... )
This allows you to check if a movie is rated better or worse than its peers.
You may want to apply multiple expressions over the same window, i.e., the same partition and frame. For example, you could modify the previous example to also include the best and worst rating in each movie’s group (same studio, genre, and release year) by using three window functions in the same query. The partition and ordering from the previous example is extracted into a dictionary to reduce repetition:
>>> from django.db.models import Avg, F, Max, Min, Window
>>> window = {
... "partition_by": [F("studio"), F("genre")],
... "order_by": "released__year",
... }
>>> Movie.objects.annotate(
... avg_rating=Window(
... expression=Avg("rating"),
... **window,
... ),
... best=Window(
... expression=Max("rating"),
... **window,
... ),
... worst=Window(
... expression=Min("rating"),
... **window,
... ),
... )
Filtering against window functions is supported as long as lookups are not
disjunctive (not using OR
or XOR
as a connector) and against a queryset
performing aggregation.
For example, a query that relies on aggregation and has an OR
-ed filter
against a window function and a field is not supported. Applying combined
predicates post-aggregation could cause rows that would normally be excluded
from groups to be included:
>>> qs = Movie.objects.annotate(
... category_rank=Window(Rank(), partition_by="category", order_by="-rating"),
... scenes_count=Count("actors"),
... ).filter(Q(category_rank__lte=3) | Q(title__contains="Batman"))
>>> list(qs)
NotImplementedError: Heterogeneous disjunctive predicates against window functions
are not implemented when performing conditional aggregation.
Among Django’s built-in database backends, MySQL, PostgreSQL, and Oracle
support window expressions. Support for different window expression features
varies among the different databases. For example, the options in
asc()
and
desc()
may not be supported. Consult the
documentation for your database as needed.
Frames¶
For a window frame, you can choose either a range-based sequence of rows or an ordinary sequence of rows.
- class ValueRange(start=None, end=None, exclusion=None)[source]¶
- frame_type¶
This attribute is set to
'RANGE'
.
PostgreSQL has limited support for
ValueRange
and only supports use of the standard start and end points, such asCURRENT ROW
andUNBOUNDED FOLLOWING
.
- class RowRange(start=None, end=None, exclusion=None)[source]¶
- frame_type¶
This attribute is set to
'ROWS'
.
Both classes return SQL with the template:
%(frame_type)s BETWEEN %(start)s AND %(end)s
The exclusion
argument allows excluding rows
(CURRENT_ROW
), groups
(GROUP
), and ties
(TIES
) from the window frames on supported
databases:
%(frame_type)s BETWEEN %(start)s AND %(end)s EXCLUDE %(exclusion)s
Frames narrow the rows that are used for computing the result. They shift from some start point to some specified end point. Frames can be used with and without partitions, but it’s often a good idea to specify an ordering of the window to ensure a deterministic result. In a frame, a peer in a frame is a row with an equivalent value, or all rows if an ordering clause isn’t present.
The default starting point for a frame is UNBOUNDED PRECEDING
which is the
first row of the partition. The end point is always explicitly included in the
SQL generated by the ORM and is by default UNBOUNDED FOLLOWING
. The default
frame includes all rows from the partition to the last row in the set.
The accepted values for the start
and end
arguments are None
, an
integer, or zero. A negative integer for start
results in N PRECEDING
,
while None
yields UNBOUNDED PRECEDING
. In ROWS
mode, a positive
integer can be used for start
resulting in N FOLLOWING
. Positive
integers are accepted for end
and results in N FOLLOWING
. In ROWS
mode, a negative integer can be used for end
resulting in N PRECEDING
.
For both start
and end
, zero will return CURRENT ROW
.
There’s a difference in what CURRENT ROW
includes. When specified in
ROWS
mode, the frame starts or ends with the current row. When specified in
RANGE
mode, the frame starts or ends at the first or last peer according to
the ordering clause. Thus, RANGE CURRENT ROW
evaluates the expression for
rows which have the same value specified by the ordering. Because the template
includes both the start
and end
points, this may be expressed with:
ValueRange(start=0, end=0)
If a movie’s “peers” are described as movies released by the same studio in the
same genre in the same year, this RowRange
example annotates each movie
with the average rating of a movie’s two prior and two following peers:
>>> from django.db.models import Avg, F, RowRange, Window
>>> Movie.objects.annotate(
... avg_rating=Window(
... expression=Avg("rating"),
... partition_by=[F("studio"), F("genre")],
... order_by="released__year",
... frame=RowRange(start=-2, end=2),
... ),
... )
If the database supports it, you can specify the start and end points based on
values of an expression in the partition. If the released
field of the
Movie
model stores the release month of each movie, this ValueRange
example annotates each movie with the average rating of a movie’s peers
released between twelve months before and twelve months after each movie:
>>> from django.db.models import Avg, F, ValueRange, Window
>>> Movie.objects.annotate(
... avg_rating=Window(
... expression=Avg("rating"),
... partition_by=[F("studio"), F("genre")],
... order_by="released__year",
... frame=ValueRange(start=-12, end=12),
... ),
... )
Technical Information¶
Below you’ll find technical implementation details that may be useful to library authors. The technical API and examples below will help with creating generic query expressions that can extend the built-in functionality that Django provides.
Expression API¶
Query expressions implement the query expression API,
but also expose a number of extra methods and attributes listed below. All
query expressions must inherit from Expression()
or a relevant
subclass.
When a query expression wraps another expression, it is responsible for calling the appropriate methods on the wrapped expression.
- class Expression[source]¶
- allowed_default¶
Tells Django that this expression can be used in
Field.db_default
. Defaults toFalse
.
- constraint_validation_compatible¶
Tells Django that this expression can be used during a constraint validation. Expressions with
constraint_validation_compatible
set toFalse
must have only one source expression. Defaults toTrue
.
- contains_aggregate¶
Tells Django that this expression contains an aggregate and that a
GROUP BY
clause needs to be added to the query.
- contains_over_clause¶
Tells Django that this expression contains a
Window
expression. It’s used, for example, to disallow window function expressions in queries that modify data.
- filterable¶
Tells Django that this expression can be referenced in
QuerySet.filter()
. Defaults toTrue
.
- window_compatible¶
Tells Django that this expression can be used as the source expression in
Window
. Defaults toFalse
.
- empty_result_set_value¶
Tells Django which value should be returned when the expression is used to apply a function over an empty result set. Defaults to
NotImplemented
which forces the expression to be computed on the database.
- set_returning¶
- New in Django 5.2.
Tells Django that this expression contains a set-returning function, enforcing subquery evaluation. It’s used, for example, to allow some Postgres set-returning functions (e.g.
JSONB_PATH_QUERY
,UNNEST
, etc.) to skip optimization and be properly evaluated when annotations spawn rows themselves. Defaults toFalse
.
- allows_composite_expressions¶
- New in Django 5.2.
Tells Django that this expression allows composite expressions, for example, to support composite primary keys. Defaults to
False
.
- resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)¶
Provides the chance to do any preprocessing or validation of the expression before it’s added to the query.
resolve_expression()
must also be called on any nested expressions. Acopy()
ofself
should be returned with any necessary transformations.query
is the backend query implementation.allow_joins
is a boolean that allows or denies the use of joins in the query.reuse
is a set of reusable joins for multi-join scenarios.summarize
is a boolean that, whenTrue
, signals that the query being computed is a terminal aggregate query.for_save
is a boolean that, whenTrue
, signals that the query being executed is performing a create or update.
- get_source_expressions()¶
Returns an ordered list of inner expressions. For example:
>>> Sum(F("foo")).get_source_expressions() [F('foo')]
- set_source_expressions(expressions)¶
Takes a list of expressions and stores them such that
get_source_expressions()
can return them.
- relabeled_clone(change_map)¶
Returns a clone (copy) of
self
, with any column aliases relabeled. Column aliases are renamed when subqueries are created.relabeled_clone()
should also be called on any nested expressions and assigned to the clone.change_map
is a dictionary mapping old aliases to new aliases.Example:
def relabeled_clone(self, change_map): clone = copy.copy(self) clone.expression = self.expression.relabeled_clone(change_map) return clone
- convert_value(value, expression, connection)¶
A hook allowing the expression to coerce
value
into a more appropriate type.expression
is the same asself
.
- get_group_by_cols()¶
Responsible for returning the list of columns references by this expression.
get_group_by_cols()
should be called on any nested expressions.F()
objects, in particular, hold a reference to a column.
- asc(nulls_first=None, nulls_last=None)¶
Returns the expression ready to be sorted in ascending order.
nulls_first
andnulls_last
define how null values are sorted. See Using F() to sort null values for example usage.
- desc(nulls_first=None, nulls_last=None)¶
Returns the expression ready to be sorted in descending order.
nulls_first
andnulls_last
define how null values are sorted. See Using F() to sort null values for example usage.
- reverse_ordering()¶
Returns
self
with any modifications required to reverse the sort order within anorder_by
call. As an example, an expression implementingNULLS LAST
would change its value to beNULLS FIRST
. Modifications are only required for expressions that implement sort order likeOrderBy
. This method is called whenreverse()
is called on a queryset.
Writing your own Query Expressions¶
You can write your own query expression classes that use, and can integrate
with, other query expressions. Let’s step through an example by writing an
implementation of the COALESCE
SQL function, without using the built-in
Func() expressions.
The COALESCE
SQL function is defined as taking a list of columns or
values. It will return the first column or value that isn’t NULL
.
We’ll start by defining the template to be used for SQL generation and
an __init__()
method to set some attributes:
import copy
from django.db.models import Expression
class Coalesce(Expression):
template = "COALESCE( %(expressions)s )"
def __init__(self, expressions, output_field):
super().__init__(output_field=output_field)
if len(expressions) < 2:
raise ValueError("expressions must have at least 2 elements")
for expression in expressions:
if not hasattr(expression, "resolve_expression"):
raise TypeError("%r is not an Expression" % expression)
self.expressions = expressions
We do some basic validation on the parameters, including requiring at least 2 columns or values, and ensuring they are expressions. We are requiring output_field here so that Django knows what kind of model field to assign the eventual result to.
Now we implement the preprocessing and validation. Since we do not have any of our own validation at this point, we delegate to the nested expressions:
def resolve_expression(
self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False
):
c = self.copy()
c.is_summary = summarize
for pos, expression in enumerate(self.expressions):
c.expressions[pos] = expression.resolve_expression(
query, allow_joins, reuse, summarize, for_save
)
return c
Next, we write the method responsible for generating the SQL:
def as_sql(self, compiler, connection, template=None):
sql_expressions, sql_params = [], []
for expression in self.expressions:
sql, params = compiler.compile(expression)
sql_expressions.append(sql)
sql_params.extend(params)
template = template or self.template
data = {"expressions": ",".join(sql_expressions)}
return template % data, sql_params
def as_oracle(self, compiler, connection):
"""
Example of vendor specific handling (Oracle in this case).
Let's make the function name lowercase.
"""
return self.as_sql(compiler, connection, template="coalesce( %(expressions)s )")
as_sql()
methods can support custom keyword arguments, allowing
as_vendorname()
methods to override data used to generate the SQL string.
Using as_sql()
keyword arguments for customization is preferable to
mutating self
within as_vendorname()
methods as the latter can lead to
errors when running on different database backends. If your class relies on
class attributes to define data, consider allowing overrides in your
as_sql()
method.
We generate the SQL for each of the expressions
by using the
compiler.compile()
method, and join the result together with commas.
Then the template is filled out with our data and the SQL and parameters
are returned.
We’ve also defined a custom implementation that is specific to the Oracle
backend. The as_oracle()
function will be called instead of as_sql()
if the Oracle backend is in use.
Finally, we implement the rest of the methods that allow our query expression to play nice with other query expressions:
def get_source_expressions(self):
return self.expressions
def set_source_expressions(self, expressions):
self.expressions = expressions
Let’s see how it works:
>>> from django.db.models import F, Value, CharField
>>> qs = Company.objects.annotate(
... tagline=Coalesce(
... [F("motto"), F("ticker_name"), F("description"), Value("No Tagline")],
... output_field=CharField(),
... )
... )
>>> for c in qs:
... print("%s: %s" % (c.name, c.tagline))
...
Google: Do No Evil
Apple: AAPL
Yahoo: Internet Company
Django Software Foundation: No Tagline
Avoiding SQL injection¶
Since a Func
’s keyword arguments for __init__()
(**extra
) and
as_sql()
(**extra_context
) are interpolated into the SQL string rather
than passed as query parameters (where the database driver would escape them),
they must not contain untrusted user input.
For example, if substring
is user-provided, this function is vulnerable to
SQL injection:
from django.db.models import Func
class Position(Func):
function = "POSITION"
template = "%(function)s('%(substring)s' in %(expressions)s)"
def __init__(self, expression, substring):
# substring=substring is an SQL injection vulnerability!
super().__init__(expression, substring=substring)
This function generates an SQL string without any parameters. Since
substring
is passed to super().__init__()
as a keyword argument, it’s
interpolated into the SQL string before the query is sent to the database.
Here’s a corrected rewrite:
class Position(Func):
function = "POSITION"
arg_joiner = " IN "
def __init__(self, expression, substring):
super().__init__(substring, expression)
With substring
instead passed as a positional argument, it’ll be passed as
a parameter in the database query.
Adding support in third-party database backends¶
If you’re using a database backend that uses a different SQL syntax for a certain function, you can add support for it by monkey patching a new method onto the function’s class.
Let’s say we’re writing a backend for Microsoft’s SQL Server which uses the SQL
LEN
instead of LENGTH
for the Length
function.
We’ll monkey patch a new method called as_sqlserver()
onto the Length
class:
from django.db.models.functions import Length
def sqlserver_length(self, compiler, connection):
return self.as_sql(compiler, connection, function="LEN")
Length.as_sqlserver = sqlserver_length
You can also customize the SQL using the template
parameter of as_sql()
.
We use as_sqlserver()
because django.db.connection.vendor
returns
sqlserver
for the backend.
Third-party backends can register their functions in the top level
__init__.py
file of the backend package or in a top level expressions.py
file (or package) that is imported from the top level __init__.py
.
For user projects wishing to patch the backend that they’re using, this code
should live in an AppConfig.ready()
method.