Fazendo consultas¶
Uma vez que tenha criado seu modelos de dados, o Django automaticamente lhe dá uma API de abstração do banco de dados que deixa que crie, retorne, edite e delete objetos. Este documento explica como usar essa API. Refira-se a Referência de modelo de dados para detalhes completos de todos os vários modelos de opções de filtros.
Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a blog application:
from datetime import date
from django.db import models
class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()
def __str__(self):
return self.name
class Author(models.Model):
name = models.CharField(max_length=200)
email = models.EmailField()
def __str__(self):
return self.name
class Entry(models.Model):
blog = models.ForeignKey(Blog, on_delete=models.CASCADE)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateField()
mod_date = models.DateField(default=date.today)
authors = models.ManyToManyField(Author)
number_of_comments = models.IntegerField(default=0)
number_of_pingbacks = models.IntegerField(default=0)
rating = models.IntegerField(default=5)
def __str__(self):
return self.headline
Criando objetos¶
Para representar uma tabela de banco de dados em objetos Python, o Django usa um sistema intuitivo: Uma classe de modelo que representa uma tabela de banco de dados, e uma intância desta classe representa um registro particular em uma tabela de banco de dados.
Para criar um objeto, instancie-o usando argumentos nomeados para a classe de modelo, então chame o save()
para persistí-lo no banco de dados.
Assuming models live in a models.py
file inside a blog
Django app, here
is an example:
>>> from blog.models import Blog
>>> b = Blog(name="Beatles Blog", tagline="All the latest Beatles news.")
>>> b.save()
Este executa um comando SQL INSERT
por detrás dos panos. O Django não acessa o banco de dados até que você chame explicitamente o save()
.
O método save()
não retorna um valor .
Salvando alterações para objetos¶
Para salvar as alerações para um objeto que já existe no banco de dados, use o save()
.
Given a Blog
instance b5
that has already been saved to the database,
this example changes its name and updates its record in the database:
>>> b5.name = "New name"
>>> b5.save()
Isso executa um comando SQL UPDATE
por detras dos panos. o Django não acessa o banco de dados até que você explicitamente chame o save()
.
Salvando campos ForeignKey
e ManyToManyField
¶
Updating a ForeignKey
field works exactly the same
way as saving a normal field – assign an object of the right type to the field
in question. This example updates the blog
attribute of an Entry
instance entry
, assuming appropriate instances of Entry
and Blog
are already saved to the database (so we can retrieve them below):
>>> from blog.models import Blog, Entry
>>> entry = Entry.objects.get(pk=1)
>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog
>>> entry.save()
Updating a ManyToManyField
works a little
differently – use the
add()
method on the field
to add a record to the relation. This example adds the Author
instance
joe
to the entry
object:
>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)
To add multiple records to a ManyToManyField
in one
go, include multiple arguments in the call to
add()
, like this:
>>> john = Author.objects.create(name="John")
>>> paul = Author.objects.create(name="Paul")
>>> george = Author.objects.create(name="George")
>>> ringo = Author.objects.create(name="Ringo")
>>> entry.authors.add(john, paul, george, ringo)
O Django irá reclamar se você tentar assinalar ou adicionar um objeto do tipo errado.
Recuperando objetos¶
Para recuperar objetos do seu banco de dados, construa uma QuerySet
através da Manager
na sua classe de modelo.
A QuerySet
representa uma coleção de objetos do seu banco de dados. Ele pode ter zero, um ou muitos * filtros*. Filtros limitam os resultados baseado nos parâmetros dados. Em termos de SQL, um QuerySet
equivale a um comando SELECT
, e um filtro é um clásula limitante tal como WHERE
or LIMIT
.
You get a QuerySet
by using your model’s
Manager
. Each model has at least one
Manager
, and it’s called
objects
by default. Access it directly via the
model class, like so:
>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name="Foo", tagline="Bar")
>>> b.objects
Traceback:
...
AttributeError: "Manager isn't accessible via Blog instances."
Nota
Os Managers
são acessíveis somente através das classes de modelo, e não de instâncias de modelos, para reforçar a separação entre operações no “nível das tabelas” e operações no “nível dos registros”.
A Manager
é a principal fonte de QuerySets
para um modelo. Por exemplo, Blog.objects.all()
retorna uma QuerySet
que contém todos os objetos do tipo Blog
do banco de dados.
Recuperando todos os objetos¶
The simplest way to retrieve objects from a table is to get all of them. To do
this, use the all()
method on a
Manager
:
>>> all_entries = Entry.objects.all()
O método all()
retorna uma QuerySet
de todos os objetos do banco de dados.
Recuperando objetos específicos com filtros.¶
A QuerySet
retornada pelo all()
descreve todos os objetos da tabela do banco de dados. Em geral, porém, você precisa selecionar somente um subconjunto de todo o conjunto de objetos.
Para criar o subconjunto, você refina o QuerySet
inicial, adicionando filtros de condições. As duas maneiras mais comuns de refinar um QuerySet
são:
filter(**kwargs)
Retorna uma nova
QuerySet
contendo objetos que combinem com os parâmetros de filtros dados.exclude(**kwargs)
Retornam uma nova
QuerySet
contendo objetos que não combinem com os parâmetros de filtros dados.
Os parâmetros de filtros (**kwargs
nas definições da função acima) devem estar no formato descrito em Filtros de campo abaixo.
Prr exemplo, para ter um QuerySet
de entradas de blog do ano 2006, use o filter()
como aqui:
Entry.objects.filter(pub_date__year=2006)
Com a classe “manager” padrão, é o mesmo que:
Entry.objects.all().filter(pub_date__year=2006)
Filtros encadeados¶
The result of refining a QuerySet
is itself a
QuerySet
, so it’s possible to chain
refinements together. For example:
>>> Entry.objects.filter(headline__startswith="What").exclude(
... pub_date__gte=datetime.date.today()
... ).filter(pub_date__gte=datetime.date(2005, 1, 30))
Ele pega o QuerySet
inicial com todas as entradas do banco de dados, adiciona um filtro, então adiciona uma exclusão, então outro filtro. O resultado final é um QuerySet
contendo todas as entradas com uma manchete que comece com “What”, que foi publicada entre 30 de janeiro de 2005 e o dia de hoje.
QuerySet
s filtradas são únicas¶
Cada vez que refine um QuerySet
, você tem uma nova QuerySet
que não está de forma alguma vinculada ao anterior QuerySet
. Cada refinamento cria uma QuerySet
separada e distinta que pode ser armazenada, usada e resusada.
Example:
>>> q1 = Entry.objects.filter(headline__startswith="What")
>>> q2 = q1.exclude(pub_date__gte=datetime.date.today())
>>> q3 = q1.filter(pub_date__gte=datetime.date.today())
Estes três QuerySets
são separados. O primeiro é um QuerySet
básico contendo todas as entradas que contenham uma manchete iniciando com “What”. O segundo é um subconjunto do primeiro, com um critério adicional que exclui aqueles cujo o pub_date
é hoje ou está no futuro. O terceiro é também um subconjunto do primeiro, com um critério adicional que seleciona somente os registros cujo o pub_date
é hoje ou está no futuro. A QuerySet
(q1
) inicial não é afetado pelo processo de refinamento.
QuerySet
s são “lazy”¶
QuerySets
are lazy – the act of creating a
QuerySet
doesn’t involve any database
activity. You can stack filters together all day long, and Django won’t
actually run the query until the QuerySet
is
evaluated. Take a look at this example:
>>> q = Entry.objects.filter(headline__startswith="What")
>>> q = q.filter(pub_date__lte=datetime.date.today())
>>> q = q.exclude(body_text__icontains="food")
>>> print(q)
Apesar de parece que isso seja três acessos ao banco de dados, de fato ele acessa o banco de dados somente um vez, na última linha (print(q)
). Em geral, os resultados de uma QuerySet
não são buscados no banco de dados até que você “peça” por eles. Quando fizer, a QuerySet
é interpretada acessando o banco de dados. Para mais detalhes de quando exatamente a interpretação ocorre, veja When QuerySets are evaluated.
Recuperando um único objeto com get()
¶
O filter()
sempre lhe dará um QuerySet
, mesmo se um único objeto combina com a consulta - neste caso, ele será uma QuerySet
que contém um único elemento.
If you know there is only one object that matches your query, you can use the
get()
method on a
Manager
which returns the object directly:
>>> one_entry = Entry.objects.get(pk=1)
Você pode usar qualquer expressão de consulta com get()
, tal como com filter()
- denovo, veja o Campos de consulta abaixo.
Note que existe uma diferença entre usar o get()
, e usar o filter()
com uma fatia de [0]
. Se não houver resultados que combinem com a consulta, o get()
irá emitir uma exceção DoesNotExist
. Esta exceção é um atributo da classe de modelo na qual a consulta está sendo realizada - no código acima, se não houver objeto Entry
com a chave-primária de 1, o Django irá emitir um Entry.DoesNotExist
.
De maneira similar, o Django irá reclamar se mais de um item combinar com a consulta get()
. Neste caso, ele emitirá um MultipleObjectsReturned
, o qual denovo é ele próprio um atributo da classe de modelo.
Outros QuerySet
métodos¶
Na maioria das vezes você usará o all()
, get()
, filter()
e o exclude()
quando precisar buscar objetos no banco de dados. Porém, está longe do todo que existe; veja the a Refrêcia da API de QuerySet para uma lista completa das vários métodos da QuerySet
.
Limitando QuerySet
s¶
Use um subconjunto da syntax de fatias de array Python para limitar seu QuerySet
para um certo número de resultados. Este é o equivalente às cláusulas SQL Limit
e OFFSET
.
For example, this returns the first 5 objects (LIMIT 5
):
>>> Entry.objects.all()[:5]
This returns the sixth through tenth objects (OFFSET 5 LIMIT 5
):
>>> Entry.objects.all()[5:10]
Índice negativo (isto é Entry.objects.all()[-1]
) não é suportado.
Generally, slicing a QuerySet
returns a new
QuerySet
– it doesn’t evaluate the query. An
exception is if you use the “step” parameter of Python slice syntax. For
example, this would actually execute the query in order to return a list of
every second object of the first 10:
>>> Entry.objects.all()[:10:2]
Further filtering or ordering of a sliced queryset is prohibited due to the ambiguous nature of how that might work.
To retrieve a single object rather than a list
(e.g. SELECT foo FROM bar LIMIT 1
), use an index instead of a slice. For
example, this returns the first Entry
in the database, after ordering
entries alphabetically by headline:
>>> Entry.objects.order_by("headline")[0]
This is roughly equivalent to:
>>> Entry.objects.order_by("headline")[0:1].get()
Note, porém, que o primeiro irá emitir um IndexError
enquanto o segundo emitirá um DoesNotExist
se nenhum objeto combinar com o critério dado. Veja o get()
para mais detalhes.
Filtros de campo¶
Filtros de campo é o que você usa para especiíicar os parâmetros da cláusula WHERE
. Eles são especificados como argumentos nomeados para os métodos da QuerySet
: filter()
, exclude()
e get()
.
Basic lookups keyword arguments take the form field__lookuptype=value
.
(That’s a double-underscore). For example:
>>> Entry.objects.filter(pub_date__lte="2006-01-01")
Traduzido (groseiramente) no seguinte SQL:
SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01';
Como isso é possível
Python has the ability to define functions that accept arbitrary name-value arguments whose names and values are evaluated at runtime. For more information, see Keyword Arguments in the official Python tutorial.
O campo especificado em um filtro tem que ser um nome de campoo do modelo. Existe uma exceção porém, no caso de uma ForeignKey
você pode especificar o nome do campo com um sufixo _id
. Neste caso, é esperado que o valor do parâmetro contenha literalmente o valor da chave-primária do modelo estrageiro. Por exemplo:
>>> Entry.objects.filter(blog_id=4)
Se você passar um argumento nomeado inválido, a funçao do filtro irá emitir um TypeError
.
The database API supports about two dozen lookup types; a complete reference can be found in the field lookup reference. To give you a taste of what’s available, here’s some of the more common lookups you’ll probably use:
exact
An “exact” match. For example:
>>> Entry.objects.get(headline__exact="Cat bites dog")
Geraria SQL ao longo destas linhas:
SELECT ... WHERE headline = 'Cat bites dog';
Se você não fornecer um tipo de filtro – isto é, se o seu argumento nomeado não contiver um “underscore” duplo – o tipo de filtro é assumido como sendo
exact
For example, the following two statements are equivalent:
>>> Blog.objects.get(id__exact=14) # Explicit form >>> Blog.objects.get(id=14) # __exact is implied
Isso se dá por conveniência, porque os filtros
exact
são casos comuns.iexact
A case-insensitive match. So, the query:
>>> Blog.objects.get(name__iexact="beatles blog")
Deveria encontrar um
Blog
entitulado"Beatles Blog"
,"beatles blog"
, ou mesmo"BeAtlES blOG"
.contains
Teste de contenção sensíveis ao tipo de caixa. Por exemplo:
Entry.objects.get(headline__contains="Lennon")
Mais ou menos traduzido para este SQL:
SELECT ... WHERE headline LIKE '%Lennon%';
Note que este irá encontrar o “headline”
'Today Lennon honored'
mas não o'today lennon honored'
.Existe também uma versão que ignora o tipo de caixa,
icontains
.startswith
,endswith
Busca começa-com e termina-com, respectivamente. Existe também a versão que ignora o tipo de caixa chamada
istartswith
eiendswith
.
Denovo, isso aqui somente arranha a superfície. Uma refrência completa pode ser achada na Referência de filtros de campo.
Filtros que abrangem os relacionamentos¶
Django offers a powerful and intuitive way to “follow” relationships in
lookups, taking care of the SQL JOIN
s for you automatically, behind the
scenes. To span a relationship, use the field name of related fields
across models, separated by double underscores, until you get to the field you
want.
This example retrieves all Entry
objects with a Blog
whose name
is 'Beatles Blog'
:
>>> Entry.objects.filter(blog__name="Beatles Blog")
A abrangância pode ser tão profunda quanto queira.
It works backwards, too. While it can be customized
, by default you refer to a “reverse”
relationship in a lookup using the lowercase name of the model.
This example retrieves all Blog
objects which have at least one Entry
whose headline
contains 'Lennon'
:
>>> Blog.objects.filter(entry__headline__contains="Lennon")
Se você estiver filtrando através de múltiplos relacionamentos e um dos modelos intermediários não tiver um valor que vá de encontro com a condição do filtro, o Django irá tratá-lo como se houvesse um objeto vazio (todos os valores são NULL
), mas válido. Tudo isso significa que nenhum erro será emitido. Por exemplo, neste filtro:
Blog.objects.filter(entry__authors__name="Lennon")
(se houvesse um modelo Author
relacionado), se não houvesse author
associado com uma “entry”, seria tratado como se também não houvesse um name
anexo, ao invés de emitir um erro por causa do author
faltante.
Blog.objects.filter(entry__authors__name__isnull=True)
irá retornar objeto do tipo Blog
que tenham um name
vazio no author
a também aqueles os quais tem um author
vazio no entry
. Se você não que estes últimos objetos, você poderia escrever:
Blog.objects.filter(entry__authors__isnull=False, entry__authors__name__isnull=True)
Abrangendo relacionamentos multi-interpretados¶
When spanning a ManyToManyField
or a reverse
ForeignKey
(such as from Blog
to Entry
),
filtering on multiple attributes raises the question of whether to require each
attribute to coincide in the same related object. We might seek blogs that have
an entry from 2008 with “Lennon” in its headline, or we might seek blogs that
merely have any entry from 2008 as well as some newer or older entry with
“Lennon” in its headline.
To select all blogs containing at least one entry from 2008 having “Lennon” in its headline (the same entry satisfying both conditions), we would write:
Blog.objects.filter(entry__headline__contains="Lennon", entry__pub_date__year=2008)
Otherwise, to perform a more permissive query selecting any blogs with merely some entry with “Lennon” in its headline and some entry from 2008, we would write:
Blog.objects.filter(entry__headline__contains="Lennon").filter(
entry__pub_date__year=2008
)
Suppose there is only one blog that has both entries containing “Lennon” and
entries from 2008, but that none of the entries from 2008 contained “Lennon”.
The first query would not return any blogs, but the second query would return
that one blog. (This is because the entries selected by the second filter may
or may not be the same as the entries in the first filter. We are filtering the
Blog
items with each filter statement, not the Entry
items.) In short,
if each condition needs to match the same related object, then each should be
contained in a single filter()
call.
Nota
As the second (more permissive) query chains multiple filters, it performs multiple joins to the primary model, potentially yielding duplicates.
>>> from datetime import date
>>> beatles = Blog.objects.create(name="Beatles Blog")
>>> pop = Blog.objects.create(name="Pop Music Blog")
>>> Entry.objects.create(
... blog=beatles,
... headline="New Lennon Biography",
... pub_date=date(2008, 6, 1),
... )
<Entry: New Lennon Biography>
>>> Entry.objects.create(
... blog=beatles,
... headline="New Lennon Biography in Paperback",
... pub_date=date(2009, 6, 1),
... )
<Entry: New Lennon Biography in Paperback>
>>> Entry.objects.create(
... blog=pop,
... headline="Best Albums of 2008",
... pub_date=date(2008, 12, 15),
... )
<Entry: Best Albums of 2008>
>>> Entry.objects.create(
... blog=pop,
... headline="Lennon Would Have Loved Hip Hop",
... pub_date=date(2020, 4, 1),
... )
<Entry: Lennon Would Have Loved Hip Hop>
>>> Blog.objects.filter(
... entry__headline__contains="Lennon",
... entry__pub_date__year=2008,
... )
<QuerySet [<Blog: Beatles Blog>]>
>>> Blog.objects.filter(
... entry__headline__contains="Lennon",
... ).filter(
... entry__pub_date__year=2008,
... )
<QuerySet [<Blog: Beatles Blog>, <Blog: Beatles Blog>, <Blog: Pop Music Blog]>
Nota
O comportamento do filter()
para consultas que abrangem relacionamentos com valores múltiplos, como descrito acima, não é implementado de maneira equivalente no exclude()
. Ao invés, as condições em uma única chamada exclude()
não necessariamente irão se referenciar ao mesmo item.
Por exemplo, a seguinte consulta excluiria blogs que contém ambas “entries” com “Lennon” na manchete e “entries” publicadas em 2008:
Blog.objects.exclude(
entry__headline__contains="Lennon",
entry__pub_date__year=2008,
)
Contudo, diferente do comportamento quando usado o filter()
, este não limitará blogs baseados em “entries” que satisfaçam ambas as condições. Para tal, isto é, para selecionar todos os blogs que não contenham “entries” publicadas com “Lennon” que foram publicadas em 2008, você precisa fazer duas consultas:
Blog.objects.exclude(
entry__in=Entry.objects.filter(
headline__contains="Lennon",
pub_date__year=2008,
),
)
Filtros podem referenciar campos do modelo¶
Nos exemplos dados até agora, construímos filtros que comparam o valor de um campo de modelo com uma constante. Mas e se você quiser comparar o valor de um modelo com outro campo no mesmo modelo?
O Django fornece a F expressions
para permitir tais comparações. Instâncias de F()
atuam como uma referência a um campo de modelo dentro de uma consulta. Essas referências podem então ser comparadas a valores de dois diferentes campos na mesma instância de modelo.
For example, to find a list of all blog entries that have had more comments
than pingbacks, we construct an F()
object to reference the pingback count,
and use that F()
object in the query:
>>> from django.db.models import F
>>> Entry.objects.filter(number_of_comments__gt=F("number_of_pingbacks"))
Django supports the use of addition, subtraction, multiplication,
division, modulo, and power arithmetic with F()
objects, both with constants
and with other F()
objects. To find all the blog entries with more than
twice as many comments as pingbacks, we modify the query:
>>> Entry.objects.filter(number_of_comments__gt=F("number_of_pingbacks") * 2)
To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we would issue the query:
>>> Entry.objects.filter(rating__lt=F("number_of_comments") + F("number_of_pingbacks"))
You can also use the double underscore notation to span relationships in
an F()
object. An F()
object with a double underscore will introduce
any joins needed to access the related object. For example, to retrieve all
the entries where the author’s name is the same as the blog name, we could
issue the query:
>>> Entry.objects.filter(authors__name=F("blog__name"))
For date and date/time fields, you can add or subtract a
timedelta
object. The following would return all entries
that were modified more than 3 days after they were published:
>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F("pub_date") + timedelta(days=3))
The F()
objects support bitwise operations by .bitand()
, .bitor()
,
.bitxor()
, .bitrightshift()
, and .bitleftshift()
. For example:
>>> F("somefield").bitand(16)
Oracle
Oracle doesn’t support bitwise XOR operation.
Expressions can reference transforms¶
Django supports using transforms in expressions.
For example, to find all Entry
objects published in the same year as they
were last modified:
>>> from django.db.models import F
>>> Entry.objects.filter(pub_date__year=F("mod_date__year"))
To find the earliest year an entry was published, we can issue the query:
>>> from django.db.models import Min
>>> Entry.objects.aggregate(first_published_year=Min("pub_date__year"))
This example finds the value of the highest rated entry and the total number of comments on all entries for each year:
>>> from django.db.models import OuterRef, Subquery, Sum
>>> Entry.objects.values("pub_date__year").annotate(
... top_rating=Subquery(
... Entry.objects.filter(
... pub_date__year=OuterRef("pub_date__year"),
... )
... .order_by("-rating")
... .values("rating")[:1]
... ),
... total_comments=Sum("number_of_comments"),
... )
O atalho de filtro pk
¶
Por conveniência, o Django fornece um atalho para o filtro pk
, o que representa a “chave-primária”.
In the example Blog
model, the primary key is the id
field, so these
three statements are equivalent:
>>> Blog.objects.get(id__exact=14) # Explicit form
>>> Blog.objects.get(id=14) # __exact is implied
>>> Blog.objects.get(pk=14) # pk implies id__exact
The use of pk
isn’t limited to __exact
queries – any query term
can be combined with pk
to perform a query on the primary key of a model:
# Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1, 4, 7])
# Get all blog entries with id > 14
>>> Blog.objects.filter(pk__gt=14)
pk
lookups also work across joins. For example, these three statements are
equivalent:
>>> Entry.objects.filter(blog__id__exact=3) # Explicit form
>>> Entry.objects.filter(blog__id=3) # __exact is implied
>>> Entry.objects.filter(blog__pk=3) # __pk implies __id__exact
Substituição de sinais de porcentagem e “underscores” nos comandos Like
¶
Os campos filtros que equivalem ao comando SQL LIKE
(iexact
, contains
, icontains
, startswith
, istartswith
, endswith
and iendswith
) irão automaticamente substituir os dois caracteres especiais usados em comandos LIKE
– o sinal de porcentagem e o “underscore”. (Em um comando LIKE
, o sinal de porcentagem significa múltiplos-caracteres curingas e o “underscore” siginifica um único caracter curinga.)
This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the entries that contain a percent sign, use the percent sign as any other character:
>>> Entry.objects.filter(headline__contains="%")
O Django irá cuidar da citação por você; o SQL resultante se parecerá com algo como:
SELECT ... WHERE headline LIKE '%\%%';
O mesmo vale para os “underscores”. Ambos os sinais, porcentagem e “underscores”, são manipulados para você de maneira transparente.
“Cache” e QuerySets
s¶
Cada QuerySet
contém um “cache” para minimizar o acesso ao banco de dados. Entendendo como isso funciona lhe permitirá escrever código mais eficiente.
Em uma classe QuerySet
que acaba de ser criada, o “cache” está vazio. A primeira vez que a QuerySet
é interpretada – e portanto, uma consulta ao banco acontece – o Django salva o resultado da consulta no “cache” da QuerySet
’s e retorna o resultado que foi requerido explicitamente (exemplo, o próximo elemento, se o QuerySet
está sendo iterado). Execuçãoes subsequentes do QuerySet
reusam os resultados que estão no “cache”.
Keep this caching behavior in mind, because it may bite you if you don’t use
your QuerySet
s correctly. For example, the
following will create two QuerySet
s, evaluate
them, and throw them away:
>>> print([e.headline for e in Entry.objects.all()])
>>> print([e.pub_date for e in Entry.objects.all()])
Isso significa que a mesma consulta de banco de dados será executada duas vezes, efetivamente dobrando a carga no banco de dados. Também existe a posibilidade das duas listas não incluírem os mesmos registros de banco de dados, porque uma Entry
talvez tenha sido adicionada ou deletada durante a fração de segundo entre as duas requisições.
To avoid this problem, save the QuerySet
and
reuse it:
>>> queryset = Entry.objects.all()
>>> print([p.headline for p in queryset]) # Evaluate the query set.
>>> print([p.pub_date for p in queryset]) # Reuse the cache from the evaluation.
Quando QuerySet
s não são armazenados no “cache”¶
Resultados de consultas nem sempre são salvas no “cache”. Quando interpretar somente parte da consulta, o “cache” é veririficado, mas se ele não estiver populado então os itens retornados pela consulta subsequente não vão para o “cache”. Especificamente, isso significa que limitar consultas usando o fatiamento de “array” ou um índice não irá popular o cache.
For example, repeatedly getting a certain index in a queryset object will query the database each time:
>>> queryset = Entry.objects.all()
>>> print(queryset[5]) # Queries the database
>>> print(queryset[5]) # Queries the database again
However, if the entire queryset has already been evaluated, the cache will be checked instead:
>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print(queryset[5]) # Uses cache
>>> print(queryset[5]) # Uses cache
Here are some examples of other actions that will result in the entire queryset being evaluated and therefore populate the cache:
>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)
Nota
Simplesmente dar um “print” no “queryset” não popula o “cache”. Isso é porque a chamada do ``__repr__()``somente retorna uma fatia de todo o “queryset”.
Asynchronous queries¶
If you are writing asynchronous views or code, you cannot use the ORM for
queries in quite the way we have described above, as you cannot call blocking
synchronous code from asynchronous code - it will block up the event loop
(or, more likely, Django will notice and raise a SynchronousOnlyOperation
to stop that from happening).
Fortunately, you can do many queries using Django’s asynchronous query APIs.
Every method that might block - such as get()
or delete()
- has an
asynchronous variant (aget()
or adelete()
), and when you iterate over
results, you can use asynchronous iteration (async for
) instead.
Query iteration¶
The default way of iterating over a query - with for
- will result in a
blocking database query behind the scenes as Django loads the results at
iteration time. To fix this, you can swap to async for
:
async for entry in Authors.objects.filter(name__startswith="A"):
...
Be aware that you also can’t do other things that might iterate over the
queryset, such as wrapping list()
around it to force its evaluation (you
can use async for
in a comprehension, if you want it).
Because QuerySet
methods like filter()
and exclude()
do not
actually run the query - they set up the queryset to run when it’s iterated
over - you can use those freely in asynchronous code. For a guide to which
methods can keep being used like this, and which have asynchronous versions,
read the next section.
QuerySet
and manager methods¶
Some methods on managers and querysets - like get()
and first()
- force
execution of the queryset and are blocking. Some, like filter()
and
exclude()
, don’t force execution and so are safe to run from asynchronous
code. But how are you supposed to tell the difference?
While you could poke around and see if there is an a
-prefixed version of
the method (for example, we have aget()
but not afilter()
), there is a
more logical way - look up what kind of method it is in the
QuerySet reference.
In there, you’ll find the methods on QuerySets grouped into two sections:
Methods that return new querysets: These are the non-blocking ones, and don’t have asynchronous versions. You’re free to use these in any situation, though read the notes on
defer()
andonly()
before you use them.Methods that do not return querysets: These are the blocking ones, and have asynchronous versions - the asynchronous name for each is noted in its documentation, though our standard pattern is to add an
a
prefix.
Using this distinction, you can work out when you need to use asynchronous versions, and when you don’t. For example, here’s a valid asynchronous query:
user = await User.objects.filter(username=my_input).afirst()
filter()
returns a queryset, and so it’s fine to keep chaining it inside an
asynchronous environment, whereas first()
evaluates and returns a model
instance - thus, we change to afirst()
, and use await
at the front of
the whole expression in order to call it in an asynchronous-friendly way.
Nota
If you forget to put the await
part in, you may see errors like
“coroutine object has no attribute x” or “<coroutine …>” strings in
place of your model instances. If you ever see these, you are missing an
await
somewhere to turn that coroutine into a real value.
Transações¶
Transactions are not currently supported with asynchronous queries and
updates. You will find that trying to use one raises
SynchronousOnlyOperation
.
If you wish to use a transaction, we suggest you write your ORM code inside a
separate, synchronous function and then call that using sync_to_async
- see
Suporte assíncrono for more.
Querying JSONField
¶
Lookups implementation is different in JSONField
,
mainly due to the existence of key transformations. To demonstrate, we will use
the following example model:
from django.db import models
class Dog(models.Model):
name = models.CharField(max_length=200)
data = models.JSONField(null=True)
def __str__(self):
return self.name
Storing and querying for None
¶
As with other fields, storing None
as the field’s value will store it as
SQL NULL
. While not recommended, it is possible to store JSON scalar
null
instead of SQL NULL
by using Value(None, JSONField())
.
Whichever of the values is stored, when retrieved from the database, the Python
representation of the JSON scalar null
is the same as SQL NULL
, i.e.
None
. Therefore, it can be hard to distinguish between them.
This only applies to None
as the top-level value of the field. If None
is inside a list
or dict
, it will always be interpreted
as JSON null
.
When querying, None
value will always be interpreted as JSON null
. To
query for SQL NULL
, use isnull
:
>>> Dog.objects.create(name="Max", data=None) # SQL NULL.
<Dog: Max>
>>> Dog.objects.create(name="Archie", data=Value(None, JSONField())) # JSON null.
<Dog: Archie>
>>> Dog.objects.filter(data=None)
<QuerySet [<Dog: Archie>]>
>>> Dog.objects.filter(data=Value(None, JSONField()))
<QuerySet [<Dog: Archie>]>
>>> Dog.objects.filter(data__isnull=True)
<QuerySet [<Dog: Max>]>
>>> Dog.objects.filter(data__isnull=False)
<QuerySet [<Dog: Archie>]>
Unless you are sure you wish to work with SQL NULL
values, consider setting
null=False
and providing a suitable default for empty values, such as
default=dict
.
Nota
Storing JSON scalar null
does not violate null=False
.
Key, index, and path transforms¶
To query based on a given dictionary key, use that key as the lookup name:
>>> Dog.objects.create(
... name="Rufus",
... data={
... "breed": "labrador",
... "owner": {
... "name": "Bob",
... "other_pets": [
... {
... "name": "Fishy",
... }
... ],
... },
... },
... )
<Dog: Rufus>
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": None})
<Dog: Meg>
>>> Dog.objects.filter(data__breed="collie")
<QuerySet [<Dog: Meg>]>
Multiple keys can be chained together to form a path lookup:
>>> Dog.objects.filter(data__owner__name="Bob")
<QuerySet [<Dog: Rufus>]>
If the key is an integer, it will be interpreted as an index transform in an array:
>>> Dog.objects.filter(data__owner__other_pets__0__name="Fishy")
<QuerySet [<Dog: Rufus>]>
If the key you wish to query by clashes with the name of another lookup, use
the contains
lookup instead.
To query for missing keys, use the isnull
lookup:
>>> Dog.objects.create(name="Shep", data={"breed": "collie"})
<Dog: Shep>
>>> Dog.objects.filter(data__owner__isnull=True)
<QuerySet [<Dog: Shep>]>
Nota
The lookup examples given above implicitly use the exact
lookup.
Key, index, and path transforms can also be chained with:
icontains
, endswith
, iendswith
,
iexact
, regex
, iregex
, startswith
,
istartswith
, lt
, lte
, gt
, and
gte
, as well as with Containment and key lookups.
KT()
expressions¶
- class KT(lookup)¶
Represents the text value of a key, index, or path transform of
JSONField
. You can use the double underscore notation inlookup
to chain dictionary key and index transforms.Por exemplo:
>>> from django.db.models.fields.json import KT >>> Dog.objects.create( ... name="Shep", ... data={ ... "owner": {"name": "Bob"}, ... "breed": ["collie", "lhasa apso"], ... }, ... ) <Dog: Shep> >>> Dog.objects.annotate( ... first_breed=KT("data__breed__1"), owner_name=KT("data__owner__name") ... ).filter(first_breed__startswith="lhasa", owner_name="Bob") <QuerySet [<Dog: Shep>]>
Nota
Due to the way in which key-path queries work,
exclude()
and
filter()
are not guaranteed to
produce exhaustive sets. If you want to include objects that do not have
the path, add the isnull
lookup.
Aviso
Since any string could be a key in a JSON object, any lookup other than those listed below will be interpreted as a key lookup. No errors are raised. Be extra careful for typing mistakes, and always check your queries work as you intend.
MariaDB and Oracle users
Using order_by()
on key, index, or
path transforms will sort the objects using the string representation of
the values. This is because MariaDB and Oracle Database do not provide a
function that converts JSON values into their equivalent SQL values.
Oracle users
On Oracle Database, using None
as the lookup value in an
exclude()
query will return objects
that do not have null
as the value at the given path, including objects
that do not have the path. On other database backends, the query will
return objects that have the path and the value is not null
.
PostgreSQL users
On PostgreSQL, if only one key or index is used, the SQL operator ->
is
used. If multiple operators are used then the #>
operator is used.
SQLite users
On SQLite, "true"
, "false"
, and "null"
string values will
always be interpreted as True
, False
, and JSON null
respectively.
Containment and key lookups¶
contains
¶
The contains
lookup is overridden on JSONField
. The returned
objects are those where the given dict
of key-value pairs are all
contained in the top-level of the field. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
<Dog: Rufus>
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
<Dog: Meg>
>>> Dog.objects.create(name="Fred", data={})
<Dog: Fred>
>>> Dog.objects.create(
... name="Merry", data={"breed": "pekingese", "tricks": ["fetch", "dance"]}
... )
>>> Dog.objects.filter(data__contains={"owner": "Bob"})
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
>>> Dog.objects.filter(data__contains={"breed": "collie"})
<QuerySet [<Dog: Meg>]>
>>> Dog.objects.filter(data__contains={"tricks": ["dance"]})
<QuerySet [<Dog: Merry>]>
Oracle and SQLite
contains
is not supported on Oracle and SQLite.
contained_by
¶
This is the inverse of the contains
lookup - the
objects returned will be those where the key-value pairs on the object are a
subset of those in the value passed. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
<Dog: Rufus>
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
<Dog: Meg>
>>> Dog.objects.create(name="Fred", data={})
<Dog: Fred>
>>> Dog.objects.create(
... name="Merry", data={"breed": "pekingese", "tricks": ["fetch", "dance"]}
... )
>>> Dog.objects.filter(data__contained_by={"breed": "collie", "owner": "Bob"})
<QuerySet [<Dog: Meg>, <Dog: Fred>]>
>>> Dog.objects.filter(data__contained_by={"breed": "collie"})
<QuerySet [<Dog: Fred>]>
>>> Dog.objects.filter(
... data__contained_by={"breed": "pekingese", "tricks": ["dance", "fetch", "hug"]}
... )
<QuerySet [<Dog: Merry>, <Dog: Fred>]>
Oracle and SQLite
contained_by
is not supported on Oracle and SQLite.
has_key
¶
Returns objects where the given key is in the top-level of the data. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
<Dog: Rufus>
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
<Dog: Meg>
>>> Dog.objects.filter(data__has_key="owner")
<QuerySet [<Dog: Meg>]>
has_keys
¶
Returns objects where all of the given keys are in the top-level of the data. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
<Dog: Rufus>
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
<Dog: Meg>
>>> Dog.objects.filter(data__has_keys=["breed", "owner"])
<QuerySet [<Dog: Meg>]>
has_any_keys
¶
Returns objects where any of the given keys are in the top-level of the data. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
<Dog: Rufus>
>>> Dog.objects.create(name="Meg", data={"owner": "Bob"})
<Dog: Meg>
>>> Dog.objects.filter(data__has_any_keys=["owner", "breed"])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
Consultas complexas com objetos Q
¶
Consultas com argumentos nomeados – no filter()
, etc. – compõem uma “E”. Se você precisa executar consultas mais complexas (por exemplo, consultas com comandos OR
), você pode usar Q objects
.
Um objeto Q
(django.db.models.Q
) é um objeto usado para encapsular uma coleção de argumentos nomeados. Estes argumentos são especificados como um “campo de filtro” acima.
Por exemplo, este objeto Q
encapsula uma única consulta LIKE
:
from django.db.models import Q
Q(question__startswith="What")
Q
objects can be combined using the &
, |
, and ^
operators. When
an operator is used on two Q
objects, it yields a new Q
object.
Por exemplo, este comando produz um único objeto Q
que representa o OR
de duas consultas "question__startswith"
:
Q(question__startswith="Who") | Q(question__startswith="What")
This is equivalent to the following SQL WHERE
clause:
WHERE question LIKE 'Who%' OR question LIKE 'What%'
You can compose statements of arbitrary complexity by combining Q
objects
with the &
, |
, and ^
operators and use parenthetical grouping.
Also, Q
objects can be negated using the ~
operator, allowing for
combined lookups that combine both a normal query and a negated (NOT
)
query:
Q(question__startswith="Who") | ~Q(pub_date__year=2005)
Para cada função de filtro que recebe argumentos nominados (ex.: filter()
, exclude()
, get()
) pode também se passado um ou mais objetos ``Q``como argumentos posicionais (not-named). Se você prover múltiplos objetos ``Q``para uma função filtro, os argumentos serão interpolados com lógicas “E”. Por exemplo:
Poll.objects.get(
Q(question__startswith="Who"),
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
)
… roughly translates into the SQL:
SELECT * from polls WHERE question LIKE 'Who%'
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06')
Funções de filtro podem misturar o uso de objetos Q
e argumentos nomeados. Todos os argumentos fornecidos para uma função filtro (sejam eles argumentos nomeados ou objetos Q
) são interpolados com “E”. Porém, se um objeto Q
é fornecido, é necessário que este preceda qualquer argumento nomeado. Por exemplo:
Poll.objects.get(
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
question__startswith="Who",
)
… seria uma consulta válida, equivalente ao exemplo anterior; mas:
# INVALID QUERY
Poll.objects.get(
question__startswith="Who",
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
)
… não seria válido.
Ver também
The OR lookups examples in Django’s
unit tests show some possible uses of Q
.
Comparando objetos¶
To compare two model instances, use the standard Python comparison operator,
the double equals sign: ==
. Behind the scenes, that compares the primary
key values of two models.
Using the Entry
example above, the following two statements are equivalent:
>>> some_entry == other_entry
>>> some_entry.id == other_entry.id
If a model’s primary key isn’t called id
, no problem. Comparisons will
always use the primary key, whatever it’s called. For example, if a model’s
primary key field is called name
, these two statements are equivalent:
>>> some_obj == other_obj
>>> some_obj.name == other_obj.name
Deletando objetos¶
The delete method, conveniently, is named
delete()
. This method immediately deletes the
object and returns the number of objects deleted and a dictionary with
the number of deletions per object type. Example:
>>> e.delete()
(1, {'blog.Entry': 1})
Você também pode deletar objetos em massa. Cada QuerySet
tem um método delete()
, o qual deleta todos os membros daquele QuerySet
.
For example, this deletes all Entry
objects with a pub_date
year of
2005:
>>> Entry.objects.filter(pub_date__year=2005).delete()
(5, {'webapp.Entry': 5})
Keep in mind that this will, whenever possible, be executed purely in SQL, and
so the delete()
methods of individual object instances will not necessarily
be called during the process. If you’ve provided a custom delete()
method
on a model class and want to ensure that it is called, you will need to
“manually” delete instances of that model (e.g., by iterating over a
QuerySet
and calling delete()
on each
object individually) rather than using the bulk
delete()
method of a
QuerySet
.
When Django deletes an object, by default it emulates the behavior of the SQL
constraint ON DELETE CASCADE
– in other words, any objects which had
foreign keys pointing at the object to be deleted will be deleted along with
it. For example:
b = Blog.objects.get(pk=1)
# This will delete the Blog and all of its Entry objects.
b.delete()
This cascade behavior is customizable via the
on_delete
argument to the
ForeignKey
.
Note that delete()
is the only
QuerySet
method that is not exposed on a
Manager
itself. This is a safety mechanism to
prevent you from accidentally requesting Entry.objects.delete()
, and
deleting all the entries. If you do want to delete all the objects, then
you have to explicitly request a complete query set:
Entry.objects.all().delete()
Copiando as instâncias de modelo¶
Although there is no built-in method for copying model instances, it is
possible to easily create new instance with all fields’ values copied. In the
simplest case, you can set pk
to None
and
_state.adding
to True
. Using our
blog example:
blog = Blog(name="My blog", tagline="Blogging is easy")
blog.save() # blog.pk == 1
blog.pk = None
blog._state.adding = True
blog.save() # blog.pk == 2
Things get more complicated if you use inheritance. Consider a subclass of
Blog
:
class ThemeBlog(Blog):
theme = models.CharField(max_length=200)
django_blog = ThemeBlog(name="Django", tagline="Django is easy", theme="python")
django_blog.save() # django_blog.pk == 3
Due to how inheritance works, you have to set both pk
and id
to
None
, and _state.adding
to True
:
django_blog.pk = None
django_blog.id = None
django_blog._state.adding = True
django_blog.save() # django_blog.pk == 4
This process doesn’t copy relations that aren’t part of the model’s database
table. For example, Entry
has a ManyToManyField
to Author
. After
duplicating an entry, you must set the many-to-many relations for the new
entry:
entry = Entry.objects.all()[0] # some previous entry
old_authors = entry.authors.all()
entry.pk = None
entry._state.adding = True
entry.save()
entry.authors.set(old_authors)
For a OneToOneField
, you must duplicate the related object and assign it
to the new object’s field to avoid violating the one-to-one unique constraint.
For example, assuming entry
is already duplicated as above:
detail = EntryDetail.objects.all()[0]
detail.pk = None
detail._state.adding = True
detail.entry = entry
detail.save()
Alterando múltiplos objetos de uma só vez.¶
Algumas vezes você querer definir um campo para um particular valor para todos os objetos em uma :classe:`~django.db.models.query.QuerySet`. Você pode fazer isto com o :método:`~django.db.models.query.QuerySet.update` método. Por exemplo:
# Update all the headlines with pub_date in 2007.
Entry.objects.filter(pub_date__year=2007).update(headline="Everything is the same")
You can only set non-relation fields and ForeignKey
fields using this method. To update a non-relation field, provide the new value
as a constant. To update ForeignKey
fields, set the
new value to be the new model instance you want to point to. For example:
>>> b = Blog.objects.get(pk=1)
# Change every Entry so that it belongs to this Blog.
>>> Entry.objects.update(blog=b)
The update()
method is applied instantly and returns the number of rows
matched by the query (which may not be equal to the number of rows updated if
some rows already have the new value). The only restriction on the
QuerySet
being updated is that it can only
access one database table: the model’s main table. You can filter based on
related fields, but you can only update columns in the model’s main
table. Example:
>>> b = Blog.objects.get(pk=1)
# Update all the headlines belonging to this Blog.
>>> Entry.objects.filter(blog=b).update(headline="Everything is the same")
Be aware that the update()
method is converted directly to an SQL
statement. It is a bulk operation for direct updates. It doesn’t run any
save()
methods on your models, or emit the
pre_save
or post_save
signals (which are a consequence of calling
save()
), or honor the
auto_now
field option.
If you want to save every item in a QuerySet
and make sure that the save()
method is called on
each instance, you don’t need any special function to handle that. Loop over
them and call save()
:
for item in my_queryset:
item.save()
Calls to update can also use F expressions
to
update one field based on the value of another field in the model. This is
especially useful for incrementing counters based upon their current value. For
example, to increment the pingback count for every entry in the blog:
>>> Entry.objects.update(number_of_pingbacks=F("number_of_pingbacks") + 1)
However, unlike F()
objects in filter and exclude clauses, you can’t
introduce joins when you use F()
objects in an update – you can only
reference fields local to the model being updated. If you attempt to introduce
a join with an F()
object, a FieldError
will be raised:
# This will raise a FieldError
>>> Entry.objects.update(headline=F("blog__name"))
Falling back to raw SQL¶
If you find yourself needing to write an SQL query that is too complex for Django’s database-mapper to handle, you can fall back on writing SQL by hand. Django has a couple of options for writing raw SQL queries; see Performing raw SQL queries.
Finally, it’s important to note that the Django database layer is merely an interface to your database. You can access your database via other tools, programming languages or database frameworks; there’s nothing Django-specific about your database.