Applications¶
Django contains a registry of installed applications that stores configuration and provides introspection. It also maintains a list of available models.
This registry is called apps
and it’s available in
django.apps
:
>>> from django.apps import apps
>>> apps.get_app_config('admin').verbose_name
'Administration'
Projects and applications¶
The term project describes a Django web application. The project Python
package is defined primarily by a settings module, but it usually contains
other things. For example, when you run django-admin startproject mysite
you’ll get a mysite
project directory that contains a mysite
Python
package with settings.py
, urls.py
, asgi.py
and wsgi.py
. The
project package is often extended to include things like fixtures, CSS, and
templates which aren’t tied to a particular application.
A project’s root directory (the one that contains manage.py
) is usually
the container for all of a project’s applications which aren’t installed
separately.
The term application describes a Python package that provides some set of features. Applications may be reused in various projects.
Applications include some combination of models, views, templates, template
tags, static files, URLs, middleware, etc. They’re generally wired into
projects with the INSTALLED_APPS
setting and optionally with other
mechanisms such as URLconfs, the MIDDLEWARE
setting, or template
inheritance.
It is important to understand that a Django application is a set of code
that interacts with various parts of the framework. There’s no such thing as
an Application
object. However, there’s a few places where Django needs to
interact with installed applications, mainly for configuration and also for
introspection. That’s why the application registry maintains metadata in an
AppConfig
instance for each installed application.
There’s no restriction that a project package can’t also be considered an
application and have models, etc. (which would require adding it to
INSTALLED_APPS
).
Configuring applications¶
To configure an application, subclass AppConfig
and put
the dotted path to that subclass in INSTALLED_APPS
.
When INSTALLED_APPS
contains the dotted path to an application
module, Django checks for a default_app_config
variable in that module.
If it’s defined, it’s the dotted path to the AppConfig
subclass for that application.
If there is no default_app_config
, Django uses the base
AppConfig
class.
default_app_config
allows applications that predate Django 1.7 such as
django.contrib.admin
to opt-in to AppConfig
features
without requiring users to update their INSTALLED_APPS
.
New applications should avoid default_app_config
. Instead they should
require the dotted path to the appropriate AppConfig
subclass to be configured explicitly in INSTALLED_APPS
.
For application authors¶
If you’re creating a pluggable app called “Rock ’n’ roll”, here’s how you would provide a proper name for the admin:
# rock_n_roll/apps.py
from django.apps import AppConfig
class RockNRollConfig(AppConfig):
name = 'rock_n_roll'
verbose_name = "Rock ’n’ roll"
You can make your application load this AppConfig
subclass by default as follows:
# rock_n_roll/__init__.py
default_app_config = 'rock_n_roll.apps.RockNRollConfig'
That will cause RockNRollConfig
to be used when INSTALLED_APPS
contains 'rock_n_roll'
. This allows you to make use of
AppConfig
features without requiring your users to update
their INSTALLED_APPS
setting. Besides this use case, it’s best to
avoid using default_app_config
and instead specify the app config class in
INSTALLED_APPS
as described next.
You can also tell your users to put 'rock_n_roll.apps.RockNRollConfig'
in
their INSTALLED_APPS
setting. You can even provide several different
AppConfig
subclasses with different behaviors and allow
your users to choose one via their INSTALLED_APPS
setting.
The recommended convention is to put the configuration class in a submodule of
the application called apps
. However, this isn’t enforced by Django.
You must include the name
attribute for Django
to determine which application this configuration applies to. You can define
any attributes documented in the AppConfig
API
reference.
Note
If your code imports the application registry in an application’s
__init__.py
, the name apps
will clash with the apps
submodule.
The best practice is to move that code to a submodule and import it. A
workaround is to import the registry under a different name:
from django.apps import apps as django_apps
For application users¶
If you’re using “Rock ’n’ roll” in a project called anthology
, but you
want it to show up as “Jazz Manouche” instead, you can provide your own
configuration:
# anthology/apps.py
from rock_n_roll.apps import RockNRollConfig
class JazzManoucheConfig(RockNRollConfig):
verbose_name = "Jazz Manouche"
# anthology/settings.py
INSTALLED_APPS = [
'anthology.apps.JazzManoucheConfig',
# ...
]
Again, defining project-specific configuration classes in a submodule called
apps
is a convention, not a requirement.
Application configuration¶
-
class
AppConfig
[source]¶ Application configuration objects store metadata for an application. Some attributes can be configured in
AppConfig
subclasses. Others are set by Django and read-only.
Configurable attributes¶
-
AppConfig.
name
¶ Full Python path to the application, e.g.
'django.contrib.admin'
.This attribute defines which application the configuration applies to. It must be set in all
AppConfig
subclasses.It must be unique across a Django project.
-
AppConfig.
label
¶ Short name for the application, e.g.
'admin'
This attribute allows relabeling an application when two applications have conflicting labels. It defaults to the last component of
name
. It should be a valid Python identifier.It must be unique across a Django project.
-
AppConfig.
verbose_name
¶ Human-readable name for the application, e.g. “Administration”.
This attribute defaults to
label.title()
.
-
AppConfig.
path
¶ Filesystem path to the application directory, e.g.
'/usr/lib/pythonX.Y/dist-packages/django/contrib/admin'
.In most cases, Django can automatically detect and set this, but you can also provide an explicit override as a class attribute on your
AppConfig
subclass. In a few situations this is required; for instance if the app package is a namespace package with multiple paths.
Read-only attributes¶
-
AppConfig.
module
¶ Root module for the application, e.g.
<module 'django.contrib.admin' from 'django/contrib/admin/__init__.py'>
.
-
AppConfig.
models_module
¶ Module containing the models, e.g.
<module 'django.contrib.admin.models' from 'django/contrib/admin/models.py'>
.It may be
None
if the application doesn’t contain amodels
module. Note that the database related signals such aspre_migrate
andpost_migrate
are only emitted for applications that have amodels
module.
Methods¶
-
AppConfig.
get_models
()[source]¶ Returns an iterable of
Model
classes for this application.Requires the app registry to be fully populated.
-
AppConfig.
get_model
(model_name, require_ready=True)[source]¶ Returns the
Model
with the givenmodel_name
.model_name
is case-insensitive.Raises
LookupError
if no such model exists in this application.Requires the app registry to be fully populated unless the
require_ready
argument is set toFalse
.require_ready
behaves exactly as inapps.get_model()
.
-
AppConfig.
ready
()[source]¶ Subclasses can override this method to perform initialization tasks such as registering signals. It is called as soon as the registry is fully populated.
Although you can’t import models at the module-level where
AppConfig
classes are defined, you can import them inready()
, using either animport
statement orget_model()
.If you’re registering
model signals
, you can refer to the sender by its string label instead of using the model class itself.Example:
from django.apps import AppConfig from django.db.models.signals import pre_save class RockNRollConfig(AppConfig): # ... def ready(self): # importing model classes from .models import MyModel # or... MyModel = self.get_model('MyModel') # registering signals with the model's string label pre_save.connect(receiver, sender='app_label.MyModel')
Warning
Although you can access model classes as described above, avoid interacting with the database in your
ready()
implementation. This includes model methods that execute queries (save()
,delete()
, manager methods etc.), and also raw SQL queries viadjango.db.connection
. Yourready()
method will run during startup of every management command. For example, even though the test database configuration is separate from the production settings,manage.py test
would still execute some queries against your production database!Note
In the usual initialization process, the
ready
method is only called once by Django. But in some corner cases, particularly in tests which are fiddling with installed applications,ready
might be called more than once. In that case, either write idempotent methods, or put a flag on yourAppConfig
classes to prevent re-running code which should be executed exactly one time.
Namespace packages as apps¶
Python packages without an __init__.py
file are known as “namespace
packages” and may be spread across multiple directories at different locations
on sys.path
(see PEP 420).
Django applications require a single base filesystem path where Django (depending on configuration) will search for templates, static assets, etc. Thus, namespace packages may only be Django applications if one of the following is true:
- The namespace package actually has only a single location (i.e. is not spread across more than one directory.)
- The
AppConfig
class used to configure the application has apath
class attribute, which is the absolute directory path Django will use as the single base path for the application.
If neither of these conditions is met, Django will raise
ImproperlyConfigured
.
Application registry¶
-
apps
¶ The application registry provides the following public API. Methods that aren’t listed below are considered private and may change without notice.
-
apps.
ready
¶ Boolean attribute that is set to
True
after the registry is fully populated and allAppConfig.ready()
methods are called.
-
apps.
get_app_config
(app_label)¶ Returns an
AppConfig
for the application with the givenapp_label
. RaisesLookupError
if no such application exists.
-
apps.
is_installed
(app_name)¶ Checks whether an application with the given name exists in the registry.
app_name
is the full name of the app, e.g.'django.contrib.admin'
.
-
apps.
get_model
(app_label, model_name, require_ready=True)¶ Returns the
Model
with the givenapp_label
andmodel_name
. As a shortcut, this method also accepts a single argument in the formapp_label.model_name
.model_name
is case-insensitive.Raises
LookupError
if no such application or model exists. RaisesValueError
when called with a single argument that doesn’t contain exactly one dot.Requires the app registry to be fully populated unless the
require_ready
argument is set toFalse
.Setting
require_ready
toFalse
allows looking up models while the app registry is being populated, specifically during the second phase where it imports models. Thenget_model()
has the same effect as importing the model. The main use case is to configure model classes with settings, such asAUTH_USER_MODEL
.When
require_ready
isFalse
,get_model()
returns a model class that may not be fully functional (reverse accessors may be missing, for example) until the app registry is fully populated. For this reason, it’s best to leaverequire_ready
to the default value ofTrue
whenever possible.
Initialization process¶
How applications are loaded¶
When Django starts, django.setup()
is responsible for populating the
application registry.
-
setup
(set_prefix=True)[source]¶ Configures Django by:
- Loading the settings.
- Setting up logging.
- If
set_prefix
is True, setting the URL resolver script prefix toFORCE_SCRIPT_NAME
if defined, or/
otherwise. - Initializing the application registry.
This function is called automatically:
- When running an HTTP server via Django’s WSGI support.
- When invoking a management command.
It must be called explicitly in other cases, for instance in plain Python scripts.
The application registry is initialized in three stages. At each stage, Django
processes all applications in the order of INSTALLED_APPS
.
First Django imports each item in
INSTALLED_APPS
.If it’s an application configuration class, Django imports the root package of the application, defined by its
name
attribute. If it’s a Python package, Django creates a default application configuration.At this stage, your code shouldn’t import any models!
In other words, your applications’ root packages and the modules that define your application configuration classes shouldn’t import any models, even indirectly.
Strictly speaking, Django allows importing models once their application configuration is loaded. However, in order to avoid needless constraints on the order of
INSTALLED_APPS
, it’s strongly recommended not import any models at this stage.Once this stage completes, APIs that operate on application configurations such as
get_app_config()
become usable.Then Django attempts to import the
models
submodule of each application, if there is one.You must define or import all models in your application’s
models.py
ormodels/__init__.py
. Otherwise, the application registry may not be fully populated at this point, which could cause the ORM to malfunction.Once this stage completes, APIs that operate on models such as
get_model()
become usable.Finally Django runs the
ready()
method of each application configuration.
Troubleshooting¶
Here are some common problems that you may encounter during initialization:
AppRegistryNotReady
: This happens when importing an application configuration or a models module triggers code that depends on the app registry.For example,
gettext()
uses the app registry to look up translation catalogs in applications. To translate at import time, you needgettext_lazy()
instead. (Usinggettext()
would be a bug, because the translation would happen at import time, rather than at each request depending on the active language.)Executing database queries with the ORM at import time in models modules will also trigger this exception. The ORM cannot function properly until all models are available.
This exception also happens if you forget to call
django.setup()
in a standalone Python script.ImportError: cannot import name ...
This happens if the import sequence ends up in a loop.To eliminate such problems, you should minimize dependencies between your models modules and do as little work as possible at import time. To avoid executing code at import time, you can move it into a function and cache its results. The code will be executed when you first need its results. This concept is known as “lazy evaluation”.
django.contrib.admin
automatically performs autodiscovery ofadmin
modules in installed applications. To prevent it, change yourINSTALLED_APPS
to contain'django.contrib.admin.apps.SimpleAdminConfig'
instead of'django.contrib.admin'
.