PostgreSQL specific aggregation functions¶
These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
General-purpose aggregation functions¶
ArrayAgg¶
BitAnd¶
BitOr¶
BoolAnd¶
BoolOr¶
JSONBAgg¶
StringAgg¶
-
class
StringAgg(expression, delimiter, distinct=False, filter=None)[source]¶ Returns the input values concatenated into a string, separated by the
delimiterstring.-
delimiter¶ Required argument. Needs to be a string.
-
distinct¶ - New in Django 1.11.
An optional boolean argument that determines if concatenated values will be distinct. Defaults to
False.
-
Aggregate functions for statistics¶
y and x¶
The arguments y and x for all these functions can be the name of a
field or an expression returning a numeric data. Both are required.
Corr¶
CovarPop¶
-
class
CovarPop(y, x, sample=False, filter=None)[source]¶ Returns the population covariance as a
float, orNoneif there aren’t any matching rows.Has one optional argument:
-
sample¶ By default
CovarPopreturns the general population covariance. However, ifsample=True, the return value will be the sample population covariance.
-
RegrAvgX¶
RegrAvgY¶
RegrCount¶
RegrIntercept¶
RegrR2¶
RegrSlope¶
RegrSXX¶
RegrSXY¶
Usage examples¶
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 |
|--------|--------|--------|
| foo | 1 | 13 |
| bar | 2 | (null) |
| test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}