全文搜索¶
django.contrib.postgres.search
模块中的数据库函数方便了 PostgreSQL 的 全文搜索引擎 的使用。
在本文档的例子中,我们将使用 执行查询 中定义的模型。
See also
有关搜索的高级概述,请参见 主题文档。
search
查找¶
常见的使用全文搜索的方式是对数据库中的单个列搜索单个术语。例如:
>>> Entry.objects.filter(body_text__search="Cheese")
[<Entry: Cheese on Toast recipes>, <Entry: Pizza Recipes>]
这将使用默认的数据库搜索配置,从 body_text
字段在数据库中创建一个 to_tsvector
,从搜索词 'Cheese'
中创建一个 plainto_tsquery
。通过匹配查询和向量得到结果。
要使用 search
查找,'django.contrib.postgres'
必须在你的 INSTALLED_APPS
。
SearchVector
¶
对单个字段进行搜索非常有用,但也有一定的限制。我们要搜索的 Entry
实例属于一个 Blog
,该 Blog
有一个 tagline
字段。要对这两个字段进行查询,可以使用 SearchVector
:
>>> from django.contrib.postgres.search import SearchVector
>>> Entry.objects.annotate(
... search=SearchVector("body_text", "blog__tagline"),
... ).filter(search="Cheese")
[<Entry: Cheese on Toast recipes>, <Entry: Pizza Recipes>]
SearchVector
的参数可以是任何 Expression
或字段名。多个参数将使用空格连接在一起,这样搜索文档就会包含所有参数。
SearchVector
对象可以组合在一起,允许您重复使用它们。例如:
>>> Entry.objects.annotate(
... search=SearchVector("body_text") + SearchVector("blog__tagline"),
... ).filter(search="Cheese")
[<Entry: Cheese on Toast recipes>, <Entry: Pizza Recipes>]
SearchQuery
¶
SearchQuery
将用户提供的术语转化为搜索查询对象,数据库将其与搜索向量进行比较。默认情况下,用户提供的所有词语都会通过词干算法,然后寻找所有结果词语的匹配。
如果 search_type
是 'plain'
,即默认值,则将术语作为单独的关键字处理。如果 search_type
是 'phrase'
,则将术语作为一个单一的短语处理。如果 search_type
是 'raw'
,那么你可以提供一个带有术语和运算符的格式化搜索查询。如果 search_type
是 'websearch'
,那么你可以提供一个格式化的搜索查询,类似于网络搜索引擎使用的格式。'websearch'
需要 PostgreSQL ≥ 11。请阅读 PostgreSQL 的 全文搜索文档 来了解两者的区别和语法。举例说明。
>>> from django.contrib.postgres.search import SearchQuery
>>> SearchQuery("red tomato") # two keywords
>>> SearchQuery("tomato red") # same results as above
>>> SearchQuery("red tomato", search_type="phrase") # a phrase
>>> SearchQuery("tomato red", search_type="phrase") # a different phrase
>>> SearchQuery("'tomato' & ('red' | 'green')", search_type="raw") # boolean operators
>>> SearchQuery(
... "'tomato' ('red' OR 'green')", search_type="websearch"
... ) # websearch operators
SearchQuery
术语可以逻辑组合,以提供更大的灵活性:
>>> from django.contrib.postgres.search import SearchQuery
>>> SearchQuery("meat") & SearchQuery("cheese") # AND
>>> SearchQuery("meat") | SearchQuery("cheese") # OR
>>> ~SearchQuery("meat") # NOT
参见 更改搜索配置 对 config
参数的解释。
SearchRank
¶
到目前为止,我们已经返回了向量和查询之间可能存在任何匹配的结果。您可能希望按某种相关性对结果进行排序。PostgreSQL 提供了一个排名函数,该函数考虑了查询术语在文档中出现的频率、术语在文档中的紧密程度以及它们出现的文档部分的重要性。匹配越好,排名的值就越高。要按相关性排序:
>>> from django.contrib.postgres.search import SearchQuery, SearchRank, SearchVector
>>> vector = SearchVector("body_text")
>>> query = SearchQuery("cheese")
>>> Entry.objects.annotate(rank=SearchRank(vector, query)).order_by("-rank")
[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]
参见 加权查询 关于 weights
参数的解释。
将 cover_density
参数设置为 True
,启用覆盖密度排序,即考虑匹配的查询词的接近程度。
提供一个整数给 normalization
参数来控制排名的归一化。这个整数是一个位掩码,所以您可以组合多种行为:
>>> from django.db.models import Value
>>> Entry.objects.annotate(
... rank=SearchRank(
... vector,
... query,
... normalization=Value(2).bitor(Value(4)),
... )
... )
PostgreSQL 文档中有更多关于 不同排序归一化选项 的细节。
SearchHeadline
¶
- class SearchHeadline(expression, query, config=None, start_sel=None, stop_sel=None, max_words=None, min_words=None, short_word=None, highlight_all=None, max_fragments=None, fragment_delimiter=None)[source]¶
接受一个文本字段或一个表达式、一个查询、一个配置和一组选项。返回高亮显示的搜索结果。
将 start_sel
和 stop_sel
参数设置为字符串值,用于在文档中高亮显示查询词。PostgreSQL 的默认值是 <b>
和 </b>
。
为 max_words
和 min_words
参数提供整数值,以确定最长和最短的标题。PostgreSQL 的默认值是 35 和 15。
为 short_word
参数提供一个整数值,以便在每个标题中丢弃这个长度或更少的字。PostgreSQL 的默认值是 3。
将 highlight_all
参数设置为 True
,以使用整个文档来代替片段,并忽略 max_words
、min_words
和 short_word
参数。这在 PostgreSQL 中是默认禁用的。
为 max_fragments
提供一个非零的整数值,以设置要显示的最大片段数。在 PostgreSQL 中默认是禁用的。
设置 fragment_delimiter
字符串参数来配置片段之间的定界符。PostgreSQL 的默认值是 " ... "
。
PostgreSQL 文档中有更多关于 高亮搜索结果 的细节。
用法示例:
>>> from django.contrib.postgres.search import SearchHeadline, SearchQuery
>>> query = SearchQuery("red tomato")
>>> entry = Entry.objects.annotate(
... headline=SearchHeadline(
... "body_text",
... query,
... start_sel="<span>",
... stop_sel="</span>",
... ),
... ).get()
>>> print(entry.headline)
Sandwich with <span>tomato</span> and <span>red</span> cheese.
参见 更改搜索配置 对 config
参数的解释。
更改搜索配置¶
您可以为 SearchVector
和 SearchQuery
指定 config
属性,以使用不同的搜索配置。这允许使用数据库定义的不同语言解析器和字典:
>>> from django.contrib.postgres.search import SearchQuery, SearchVector
>>> Entry.objects.annotate(
... search=SearchVector("body_text", config="french"),
... ).filter(search=SearchQuery("œuf", config="french"))
[<Entry: Pain perdu>]
config
的值也可以存储在另一个列中:
>>> from django.db.models import F
>>> Entry.objects.annotate(
... search=SearchVector("body_text", config=F("blog__language")),
... ).filter(search=SearchQuery("œuf", config=F("blog__language")))
[<Entry: Pain perdu>]
加权查询¶
不同字段在查询中的相关性可能不同,因此您可以在将它们组合之前设置各个向量的权重:
>>> from django.contrib.postgres.search import SearchQuery, SearchRank, SearchVector
>>> vector = SearchVector("body_text", weight="A") + SearchVector(
... "blog__tagline", weight="B"
... )
>>> query = SearchQuery("cheese")
>>> Entry.objects.annotate(rank=SearchRank(vector, query)).filter(rank__gte=0.3).order_by(
... "rank"
... )
权重应该是以下字母之一:D、C、B、A。默认情况下,这些权重分别对应数字 0.1
、0.2
、0.4
和 1.0
。如果您希望以不同的方式设置权重,可以将一个包含四个浮点数的列表传递给 SearchRank
,按照上述相同的顺序设置权重:
>>> rank = SearchRank(vector, query, weights=[0.2, 0.4, 0.6, 0.8])
>>> Entry.objects.annotate(rank=rank).filter(rank__gte=0.3).order_by("-rank")
性能¶
使用这些函数都不需要特殊的数据库配置,但是,如果你搜索的记录超过几百条,你很可能会遇到性能问题。例如,全文搜索是一个比比较整数大小更密集的过程。
如果您查询的所有字段都包含在一个特定的模型中,您可以创建一个与您希望使用的搜索向量匹配的功能性 GIN
或 GiST
索引。例如:
GinIndex(
SearchVector("body_text", "headline", config="english"),
name="search_vector_idx",
)
PostgreSQL 文档详细介绍了如何为全文搜索创建索引,您可以查看 创建全文搜索索引的 PostgreSQL 文档 获取更多信息。
SearchVectorField
¶
如果这种方法变得太慢,您可以在模型中添加一个 SearchVectorField
。您需要使用触发器保持它的数据更新,例如,可以参考 PostgreSQL 文档 中的描述。然后,您可以查询该字段,就像它是一个已注释的 SearchVector
一样:
>>> Entry.objects.update(search_vector=SearchVector("body_text"))
>>> Entry.objects.filter(search_vector="cheese")
[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]
三元相似度¶
另一种搜索的方法是三字母相似度。三字母是指三个连续的字符组合。除了 trigram_similar
、trigram_word_similar
和 trigram_strict_word_similar
查找之外,您还可以使用一些其他表达式。
要使用它们,你需要激活 PostgreSQL 上的 pg_trgm 扩展 。你可以使用 TrigramExtension
迁移操作来安装它。
TrigramSimilarity
¶
接受一个字段名或表达式,以及一个字符串或表达式。返回两个参数之间的三元相似度。
用法示例:
>>> from django.contrib.postgres.search import TrigramSimilarity
>>> Author.objects.create(name="Katy Stevens")
>>> Author.objects.create(name="Stephen Keats")
>>> test = "Katie Stephens"
>>> Author.objects.annotate(
... similarity=TrigramSimilarity("name", test),
... ).filter(
... similarity__gt=0.3
... ).order_by("-similarity")
[<Author: Katy Stevens>, <Author: Stephen Keats>]
TrigramWordSimilarity
¶
接受一个字符串或表达式,以及一个字段名或表达式。返回两个参数之间的三元相似度。
用法示例:
>>> from django.contrib.postgres.search import TrigramWordSimilarity
>>> Author.objects.create(name="Katy Stevens")
>>> Author.objects.create(name="Stephen Keats")
>>> test = "Kat"
>>> Author.objects.annotate(
... similarity=TrigramWordSimilarity(test, "name"),
... ).filter(
... similarity__gt=0.3
... ).order_by("-similarity")
[<Author: Katy Stevens>]
TrigramStrictWordSimilarity
¶
接受一个字符串或表达式,以及一个字段名或表达式。返回两个参数之间的三字母严格单词相似度。类似于 TrigramWordSimilarity()
,但它强制范围边界与单词边界匹配。
TrigramDistance
¶
接受一个字段名或表达式,以及一个字符串或表达式。返回两个参数之间的三元距离。
用法示例:
>>> from django.contrib.postgres.search import TrigramDistance
>>> Author.objects.create(name="Katy Stevens")
>>> Author.objects.create(name="Stephen Keats")
>>> test = "Katie Stephens"
>>> Author.objects.annotate(
... distance=TrigramDistance("name", test),
... ).filter(
... distance__lte=0.7
... ).order_by("distance")
[<Author: Katy Stevens>, <Author: Stephen Keats>]
TrigramWordDistance
¶
接受一个字符串或表达式,以及一个字段名或表达式。返回两个参数之间的三元字距离。
用法示例:
>>> from django.contrib.postgres.search import TrigramWordDistance
>>> Author.objects.create(name="Katy Stevens")
>>> Author.objects.create(name="Stephen Keats")
>>> test = "Kat"
>>> Author.objects.annotate(
... distance=TrigramWordDistance(test, "name"),
... ).filter(
... distance__lte=0.7
... ).order_by("distance")
[<Author: Katy Stevens>]
TrigramStrictWordDistance
¶
接受一个字符串或表达式,以及一个字段名或表达式。返回两个参数之间的三字母严格单词距离。