Being a web framework, Django needs a convenient way to generate HTML dynamically. The most common approach relies on templates. A template contains the static parts of the desired HTML output as well as some special syntax describing how dynamic content will be inserted. For a hands-on example of creating HTML pages with templates, see Tutorial 3.

A Django project can be configured with one or several template engines (or even zero if you don’t use templates). Django ships built-in backends for its own template system, creatively called the Django template language (DTL), and for the popular alternative Jinja2. Backends for other template languages may be available from third-parties.

Django defines a standard API for loading and rendering templates regardless of the backend. Loading consists of finding the template for a given identifier and preprocessing it, usually compiling it to an in-memory representation. Rendering means interpolating the template with context data and returning the resulting string.

The Django template language is Django’s own template system. Until Django 1.8 it was the only built-in option available. It’s a good template library even though it’s fairly opinionated and sports a few idiosyncrasies. If you don’t have a pressing reason to choose another backend, you should use the DTL, especially if you’re writing a pluggable application and you intend to distribute templates. Django’s contrib apps that include templates, like django.contrib.admin, use the DTL.

For historical reasons, both the generic support for template engines and the implementation of the Django template language live in the django.template namespace.

Support for template engines

New in Django 1.8:

Support for multiple template engines and the TEMPLATES setting were added in Django 1.8.


Templates engines are configured with the TEMPLATES setting. It’s a list of configurations, one for each engine. The default value is empty. The settings.py generated by the startproject command defines a more useful value:

        'BACKEND': 'django.template.backends.django.DjangoTemplates',
        'DIRS': [],
        'APP_DIRS': True,
        'OPTIONS': {
            # ... some options here ...

BACKEND is a dotted Python path to a template engine class implementing Django’s template backend API. The built-in backends are django.template.backends.django.DjangoTemplates and django.template.backends.jinja2.Jinja2.

Since most engines load templates from files, the top-level configuration for each engine contains two common settings:

  • DIRS defines a list of directories where the engine should look for template source files, in search order.
  • APP_DIRS tells whether the engine should look for templates inside installed applications. Each backend defines a conventional name for the subdirectory inside applications where its templates should be stored.

While uncommon, it’s possible to configure several instances of the same backend with different options. In that case you should define a unique NAME for each engine.

OPTIONS contains backend-specific settings.


The django.template.loader module defines two functions to load templates.

get_template(template_name, dirs=_dirs_undefined, using=None)[source]

This function loads the template with the given name and returns a Template object.

The exact type of the return value depends on the backend that loaded the template. Each backend has its own Template class.

get_template() tries each template engine in order until one succeeds. If the template cannot be found, it raises TemplateDoesNotExist. If the template is found but contains invalid syntax, it raises TemplateSyntaxError.

How templates are searched and loaded depends on each engine’s backend and configuration.

If you want to restrict the search to a particular template engine, pass the engine’s NAME in the using argument.

Changed in Django 1.7:

The dirs parameter was added.

Deprecated since version 1.8: The dirs parameter was deprecated.

Changed in Django 1.8:

The using parameter was added.

Changed in Django 1.8:

get_template() returns a backend-dependent Template instead of a django.template.Template.

select_template(template_name_list, dirs=_dirs_undefined, using=None)[source]

select_template() is just like get_template(), except it takes a list of template names. It tries each name in order and returns the first template that exists.

Changed in Django 1.7:

The dirs parameter was added.

Deprecated since version 1.8: The dirs parameter was deprecated.

Changed in Django 1.8:

The using parameter was added.

Changed in Django 1.8:

select_template() returns a backend-dependent Template instead of a django.template.Template.

If loading a template fails, the following two exceptions, defined in django.template, may be raised:

exception TemplateDoesNotExist

This exception is raised when a template cannot be found.

exception TemplateSyntaxError

This exception is raised when a template was found but contains errors.

Template objects returned by get_template() and select_template() must provide a render() method with the following signature:

Template.render(context=None, request=None)

Renders this template with a given context.

If context is provided, it must be a dict. If it isn’t provided, the engine will render the template with an empty context.

If request is provided, it must be an HttpRequest. Then the engine must make it, as well as the CSRF token, available in the template. How this is achieved is up to each backend.

Here’s an example of the search algorithm. For this example the TEMPLATES setting is:

        'BACKEND': 'django.template.backends.django.DjangoTemplates',
        'DIRS': [
        'BACKEND': 'django.template.backends.jinja2.Jinja2',
        'DIRS': [

If you call get_template('story_detail.html'), here are the files Django will look for, in order:

  • /home/html/example.com/story_detail.html ('django' engine)
  • /home/html/default/story_detail.html ('django' engine)
  • /home/html/jinja2/story_detail.html ('jinja2' engine)

If you call select_template(['story_253_detail.html', 'story_detail.html']), here’s what Django will look for:

  • /home/html/example.com/story_253_detail.html ('django' engine)
  • /home/html/default/story_253_detail.html ('django' engine)
  • /home/html/jinja2/story_253_detail.html ('jinja2' engine)
  • /home/html/example.com/story_detail.html ('django' engine)
  • /home/html/default/story_detail.html ('django' engine)
  • /home/html/jinja2/story_detail.html ('jinja2' engine)

When Django finds a template that exists, it stops looking.


You can use select_template() for flexible template loading. For example, if you’ve written a news story and want some stories to have custom templates, use something like select_template(['story_%s_detail.html' % story.id, 'story_detail.html']). That’ll allow you to use a custom template for an individual story, with a fallback template for stories that don’t have custom templates.

It’s possible – and preferable – to organize templates in subdirectories inside each directory containing templates. The convention is to make a subdirectory for each Django app, with subdirectories within those subdirectories as needed.

Do this for your own sanity. Storing all templates in the root level of a single directory gets messy.

To load a template that’s within a subdirectory, just use a slash, like so:


Using the same TEMPLATES option as above, this will attempt to load the following templates:

  • /home/html/example.com/news/story_detail.html ('django' engine)
  • /home/html/default/news/story_detail.html ('django' engine)
  • /home/html/jinja2/news/story_detail.html ('jinja2' engine)

In addition, to cut down on the repetitive nature of loading and rendering templates, Django provides a shortcut function which automates the process.

render_to_string(template_name, context=None, context_instance=_context_instance_undefined, request=None, using=None)[source]

render_to_string() loads a template like get_template() and calls its render() method immediately. It takes the following arguments.

The name of the template to load and render. If it’s a list of template names, Django uses select_template() instead of get_template() to find the template.

A dict to be used as the template’s context for rendering.

Changed in Django 1.8:

The context argument used to be called dictionary. That name is deprecated in Django 1.8 and will be removed in Django 1.10.

context is now optional. An empty context will be used if it isn’t provided.


An instance of Context or a subclass (e.g., an instance of RequestContext) to use as the template’s context.

Deprecated since version 1.8: The context_instance argument is deprecated. Use context and if needed request.


An optional HttpRequest that will be available during the template’s rendering process.

New in Django 1.8:

The request argument was added.

See also the render() and render_to_response() shortcuts, which call render_to_string() and feed the result into an HttpResponse suitable for returning from a view.

Finally, you can use configured engines directly:


Template engines are available in django.template.engines:

from django.template import engines

django_engine = engines['django']
template = django_engine.from_string("Hello {{ name }}!")

The lookup key — 'django' in this example — is the engine’s NAME.

Built-in backends

class DjangoTemplates[source]

Set BACKEND to 'django.template.backends.django.DjangoTemplates' to configure a Django template engine.

When APP_DIRS is True, DjangoTemplates engines look for templates in the templates subdirectory of installed applications. This generic name was kept for backwards-compatibility.

DjangoTemplates engines accept the following OPTIONS:

  • 'allowed_include_roots': a list of strings representing allowed prefixes for the {% ssi %} template tag. This is a security measure, so that template authors can’t access files that they shouldn’t be accessing.

    For example, if 'allowed_include_roots' is ['/home/html', '/var/www'], then {% ssi /home/html/foo.txt %} would work, but {% ssi /etc/passwd %} wouldn’t.

    It defaults to an empty list.

    Deprecated since version 1.8: allowed_include_roots is deprecated because the {% ssi %} tag is deprecated.

  • 'context_processors': a list of dotted Python paths to callables that are used to populate the context when a template is rendered with a request. These callables take a request object as their argument and return a dict of items to be merged into the context.

    It defaults to an empty list.

    See RequestContext for more information.

  • 'debug': a boolean that turns on/off template debug mode. If it is True, the fancy error page will display a detailed report for any exception raised during template rendering. This report contains the relevant snippet of the template with the appropriate line highlighted.

    It defaults to the value of the DEBUG setting.

  • 'loaders': a list of dotted Python paths to template loader classes. Each Loader class knows how to import templates from a particular source. Optionally, a tuple can be used instead of a string. The first item in the tuple should be the Loader class name, and subsequent items are passed to the Loader during initialization.

    The default depends on the values of DIRS and APP_DIRS.

    See Loader types for details.

  • 'string_if_invalid': the output, as a string, that the template system should use for invalid (e.g. misspelled) variables.

    It defaults to an empty string.

    See How invalid variables are handled for details.

  • 'file_charset': the charset used to read template files on disk.

    It defaults to the value of FILE_CHARSET.

class Jinja2[source]

Requires Jinja2 to be installed:

$ pip install Jinja2

Set BACKEND to 'django.template.backends.jinja2.Jinja2' to configure a Jinja2 engine.

When APP_DIRS is True, Jinja2 engines look for templates in the jinja2 subdirectory of installed applications.

The most important entry in OPTIONS is 'environment'. It’s a dotted Python path to a callable returning a Jinja2 environment. It defaults to 'jinja2.Environment'. Django invokes that callable and passes other options as keyword arguments. Furthermore, Django adds defaults that differ from Jinja2’s for a few options:

  • 'autoescape': True
  • 'loader': a loader configured for DIRS and APP_DIRS
  • 'auto_reload': settings.DEBUG
  • 'undefined': DebugUndefined if settings.DEBUG else Undefined

The default configuration is purposefully kept to a minimum. The Jinja2 backend doesn’t create a Django-flavored environment. It doesn’t know about Django context processors, filters, and tags. In order to use Django-specific APIs, you must configure them into the environment.

For example, you can create myproject/jinja2.py with this content:

from __future__ import absolute_import  # Python 2 only

from django.contrib.staticfiles.storage import staticfiles_storage
from django.core.urlresolvers import reverse

from jinja2 import Environment

def environment(**options):
    env = Environment(**options)
        'static': staticfiles_storage.url,
        'url': reverse,
    return env

and set the 'environment' option to 'myproject.jinja2.environment'.

Then you could use the following constructs in Jinja2 templates:

<img src="{{ static('path/to/company-logo.png') }}" alt="Company Logo">

<a href="{{ url('admin:index') }}">Administration</a>

The concepts of tags and filters exist both in the Django template language and in Jinja2 but they’re used differently. Since Jinja2 supports passing arguments to callables in templates, many features that require a template tag or filter in Django templates can be achieved simply by calling a function in Jinja2 templates, as shown in the example above. Jinja2’s global namespace removes the need for template context processors. The Django template language doesn’t have an equivalent of Jinja2 tests.

Custom backends

Here’s how to implement a custom template backend in order to use another template system. A template backend is a class that inherits django.template.backends.base.BaseEngine. It must implement get_template() and optionally from_string(). Here’s an example for a fictional foobar template library:

from django.template import TemplateDoesNotExist, TemplateSyntaxError
from django.template.backends.base import BaseEngine
from django.template.backends.utils import csrf_input_lazy, csrf_token_lazy

import foobar

class FooBar(BaseEngine):

    # Name of the subdirectory containing the templates for this engine
    # inside an installed application.
    app_dirname = 'foobar'

    def __init__(self, params):
        params = params.copy()
        options = params.pop('OPTIONS').copy()
        super(FooBar, self).__init__(params)

        self.engine = foobar.Engine(**options)

    def from_string(self, template_code):
          return Template(self.engine.from_string(template_code))
        except foobar.TemplateCompilationFailed as exc:
            raise TemplateSyntaxError(exc.args)

    def get_template(self, template_name):
            return Template(self.engine.get_template(template_name))
        except foobar.TemplateNotFound as exc:
            raise TemplateDoesNotExist(exc.args)
        except foobar.TemplateCompilationFailed as exc:
            raise TemplateSyntaxError(exc.args)

class Template(object):

    def __init__(self, template):
        self.template = template

    def render(self, context=None, request=None):
        if context is None:
            context = {}
        if request is not None:
            context['request'] = request
            context['csrf_input'] = csrf_input_lazy(request)
            context['csrf_token'] = csrf_token_lazy(request)
        return self.template.render(context)

See DEP 182 for more information.

The Django template language


About this section

This is an overview of the Django template language’s syntax. For details see the language syntax reference.

A Django template is simply a text document or a Python string marked-up using the Django template language. Some constructs are recognized and interpreted by the template engine. The main ones are variables and tags.

A template is rendered with a context. Rendering replaces variables with their values, which are looked up in the context, and executes tags. Everything else is output as is.

The syntax of the Django template language involves four constructs.


A variable outputs a value from the context, which is a dict-like object mapping keys to values.

Variables are surrounded by {{ and }} like this:

My first name is {{ first_name }}. My last name is {{ last_name }}.

With a context of {'first_name': 'John', 'last_name': 'Doe'}, this template renders to:

My first name is John. My last name is Doe.

Dictionary lookup, attribute lookup and list-index lookups are implemented with a dot notation:

{{ my_dict.key }}
{{ my_object.attribute }}
{{ my_list.0 }}

If a variable resolves to a callable, the template system will call it with no arguments and use its result instead of the callable.


Tags provide arbitrary logic in the rendering process.

This definition is deliberately vague. For example, a tag can output content, serve as a control structure e.g. an “if” statement or a “for” loop, grab content from a database, or even enable access to other template tags.

Tags are surrounded by {% and %} like this:

{% csrf_token %}

Most tags accept arguments:

{% cycle 'odd' 'even' %}

Some tags require beginning and ending tags:

{% if user.is_authenticated %}Hello, {{ user.username }}.{% endif %}

A reference of built-in tags is available as well as instructions for writing custom tags.


Filters transform the values of variables and tag arguments.

They look like this:

{{ django|title }}

With a context of {'django': 'the web framework for perfectionists with deadlines'}, this template renders to:

The Web Framework For Perfectionists With Deadlines

Some filters take an argument:

{{ my_date|date:"Y-m-d" }}

A reference of built-in filters is available as well as instructions for writing custom filters.


Comments look like this:

{# this won't be rendered #}

A {% comment %} tag provides multi-line comments.


About this section

This is an overview of the Django template language’s APIs. For details see the API reference.


django.template.Engine encapsulates an instance of the Django template system. The main reason for instantiating an Engine directly is to use the Django template language outside of a Django project.

django.template.backends.django.DjangoTemplates is a thin wrapper adapting django.template.Engine to Django’s template backend API.


django.template.Template represents a compiled template. Templates are obtained with Engine.get_template() or Engine.from_string()

Likewise django.template.backends.django.Template is a thin wrapper adapting django.template.Template to the common template API.


django.template.Context holds some metadata in addition to the context data. It is passed to Template.render() for rendering a template.

django.template.RequestContext is a subclass of Context that stores the current HttpRequest and runs template context processors.

The common API doesn’t have an equivalent concept. Context data is passed in a plain dict and the current HttpRequest is passed separately if needed.


Template loaders are responsible for locating templates, loading them, and returning Template objects.

Django provides several built-in template loaders and supports custom template loaders.

Context processors

Context processors are functions that receive the current HttpRequest as an argument and return a dict of data to be added to the rendering context.

Their main use is to add common data shared by all templates to the context without repeating code in every view.

Django provides many built-in context processors. Implementing a custom context processor is as simple as defining a function.

Back to Top