- Language: en
Databases¶
Django officially supports the following databases:
There are also a number of database backends provided by third parties.
Django attempts to support as many features as possible on all database backends. However, not all database backends are alike, and we’ve had to make design decisions on which features to support and which assumptions we can make safely.
This file describes some of the features that might be relevant to Django usage. It is not intended as a replacement for server-specific documentation or reference manuals.
General notes¶
Persistent connections¶
Persistent connections avoid the overhead of reestablishing a connection to
the database in each HTTP request. They’re controlled by the
CONN_MAX_AGE
parameter which defines the maximum lifetime of a
connection. It can be set independently for each database.
The default value is 0
, preserving the historical behavior of closing the
database connection at the end of each request. To enable persistent
connections, set CONN_MAX_AGE
to a positive integer of seconds. For
unlimited persistent connections, set it to None
.
Connection management¶
Django opens a connection to the database when it first makes a database
query. It keeps this connection open and reuses it in subsequent requests.
Django closes the connection once it exceeds the maximum age defined by
CONN_MAX_AGE
or when it isn’t usable any longer.
In detail, Django automatically opens a connection to the database whenever it needs one and doesn’t have one already — either because this is the first connection, or because the previous connection was closed.
At the beginning of each request, Django closes the connection if it has
reached its maximum age. If your database terminates idle connections after
some time, you should set CONN_MAX_AGE
to a lower value, so that
Django doesn’t attempt to use a connection that has been terminated by the
database server. (This problem may only affect very low traffic sites.)
At the end of each request, Django closes the connection if it has reached its maximum age or if it is in an unrecoverable error state. If any database errors have occurred while processing the requests, Django checks whether the connection still works, and closes it if it doesn’t. Thus, database errors affect at most one request per each application’s worker thread; if the connection becomes unusable, the next request gets a fresh connection.
Setting CONN_HEALTH_CHECKS
to True
can be used to improve the
robustness of connection reuse and prevent errors when a connection has been
closed by the database server which is now ready to accept and serve new
connections, e.g. after database server restart. The health check is performed
only once per request and only if the database is being accessed during the
handling of the request.
Caveats¶
Since each thread maintains its own connection, your database must support at least as many simultaneous connections as you have worker threads.
Sometimes a database won’t be accessed by the majority of your views, for
example because it’s the database of an external system, or thanks to caching.
In such cases, you should set CONN_MAX_AGE
to a low value or even
0
, because it doesn’t make sense to maintain a connection that’s unlikely
to be reused. This will help keep the number of simultaneous connections to
this database small.
The development server creates a new thread for each request it handles, negating the effect of persistent connections. Don’t enable them during development.
When Django establishes a connection to the database, it sets up appropriate parameters, depending on the backend being used. If you enable persistent connections, this setup is no longer repeated every request. If you modify parameters such as the connection’s isolation level or time zone, you should either restore Django’s defaults at the end of each request, force an appropriate value at the beginning of each request, or disable persistent connections.
If a connection is created in a long-running process, outside of Django’s
request-response cycle, the connection will remain open until explicitly
closed, or timeout occurs. You can use django.db.close_old_connections()
to
close all old or unusable connections.
Encoding¶
Django assumes that all databases use UTF-8 encoding. Using other encodings may result in unexpected behavior such as “value too long” errors from your database for data that is valid in Django. See the database specific notes below for information on how to set up your database correctly.
PostgreSQL notes¶
Django supports PostgreSQL 14 and higher. psycopg 3.1.8+ or psycopg2 2.8.4+ is required, though the latest psycopg 3.1.8+ is recommended.
Note
Support for psycopg2
is likely to be deprecated and removed at some
point in the future.
PostgreSQL connection settings¶
See HOST
for details.
To connect using a service name from the connection service file and a
password from the password file, you must specify them in the
OPTIONS
part of your database configuration in DATABASES
:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.postgresql",
"OPTIONS": {
"service": "my_service",
"passfile": ".my_pgpass",
},
}
}
[my_service]
host=localhost
user=USER
dbname=NAME
port=5432
localhost:5432:NAME:USER:PASSWORD
The PostgreSQL backend passes the content of OPTIONS
as keyword
arguments to the connection constructor, allowing for more advanced control
of driver behavior. All available parameters are described in detail in the
PostgreSQL documentation.
Warning
Using a service name for testing purposes is not supported. This may be implemented later.
Optimizing PostgreSQL’s configuration¶
Django needs the following parameters for its database connections:
client_encoding
:'UTF8'
,default_transaction_isolation
:'read committed'
by default, or the value set in the connection options (see below),
If these parameters already have the correct values, Django won’t set them for
every new connection, which improves performance slightly. You can configure
them directly in postgresql.conf
or more conveniently per database
user with ALTER ROLE.
Django will work just fine without this optimization, but each new connection will do some additional queries to set these parameters.
Isolation level¶
Like PostgreSQL itself, Django defaults to the READ COMMITTED
isolation
level. If you need a higher isolation level such as REPEATABLE READ
or
SERIALIZABLE
, set it in the OPTIONS
part of your database
configuration in DATABASES
:
from django.db.backends.postgresql.psycopg_any import IsolationLevel
DATABASES = {
# ...
"OPTIONS": {
"isolation_level": IsolationLevel.SERIALIZABLE,
},
}
Note
Under higher isolation levels, your application should be prepared to handle exceptions raised on serialization failures. This option is designed for advanced uses.
Role¶
If you need to use a different role for database connections than the role use
to establish the connection, set it in the OPTIONS
part of your
database configuration in DATABASES
:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.postgresql",
# ...
"OPTIONS": {
"assume_role": "my_application_role",
},
},
}
Connection pool¶
To use a connection pool with psycopg, you can either set "pool"
in the
OPTIONS
part of your database configuration in DATABASES
to be a dict to be passed to ConnectionPool
, or
to True
to use the ConnectionPool
defaults:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.postgresql",
# ...
"OPTIONS": {
"pool": True,
},
},
}
This option requires psycopg[pool]
or psycopg-pool to be installed
and is ignored with psycopg2
.
Server-side parameters binding¶
With psycopg 3.1.8+, Django defaults to the client-side binding
cursors. If you want to use the
server-side binding set it in the
OPTIONS
part of your database configuration in
DATABASES
:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.postgresql",
# ...
"OPTIONS": {
"server_side_binding": True,
},
},
}
This option is ignored with psycopg2
.
Indexes for varchar
and text
columns¶
When specifying db_index=True
on your model fields, Django typically
outputs a single CREATE INDEX
statement. However, if the database type
for the field is either varchar
or text
(e.g., used by CharField
,
FileField
, and TextField
), then Django will create
an additional index that uses an appropriate PostgreSQL operator class
for the column. The extra index is necessary to correctly perform
lookups that use the LIKE
operator in their SQL, as is done with the
contains
and startswith
lookup types.
Migration operation for adding extensions¶
If you need to add a PostgreSQL extension (like hstore
, postgis
, etc.)
using a migration, use the
CreateExtension
operation.
Server-side cursors¶
When using QuerySet.iterator()
, Django opens a server-side
cursor. By default, PostgreSQL assumes that
only the first 10% of the results of cursor queries will be fetched. The query
planner spends less time planning the query and starts returning results
faster, but this could diminish performance if more than 10% of the results are
retrieved. PostgreSQL’s assumptions on the number of rows retrieved for a
cursor query is controlled with the cursor_tuple_fraction option.
Transaction pooling and server-side cursors¶
Using a connection pooler in transaction pooling mode (e.g. PgBouncer) requires disabling server-side cursors for that connection.
Server-side cursors are local to a connection and remain open at the end of a
transaction when AUTOCOMMIT
is True
. A
subsequent transaction may attempt to fetch more results from a server-side
cursor. In transaction pooling mode, there’s no guarantee that subsequent
transactions will use the same connection. If a different connection is used,
an error is raised when the transaction references the server-side cursor,
because server-side cursors are only accessible in the connection in which they
were created.
One solution is to disable server-side cursors for a connection in
DATABASES
by setting DISABLE_SERVER_SIDE_CURSORS
to True
.
To benefit from server-side cursors in transaction pooling mode, you could set up another connection to the database in order to perform queries that use server-side cursors. This connection needs to either be directly to the database or to a connection pooler in session pooling mode.
Another option is to wrap each QuerySet
using server-side cursors in an
atomic()
block, because it disables autocommit
for the duration of the transaction. This way, the server-side cursor will only
live for the duration of the transaction.
Manually-specifying values of auto-incrementing primary keys¶
Django uses PostgreSQL’s identity columns to store auto-incrementing primary keys. An identity column is populated with values from a sequence that keeps track of the next available value. Manually assigning a value to an auto-incrementing field doesn’t update the field’s sequence, which might later cause a conflict. For example:
>>> from django.contrib.auth.models import User
>>> User.objects.create(username="alice", pk=1)
<User: alice>
>>> # The sequence hasn't been updated; its next value is 1.
>>> User.objects.create(username="bob")
IntegrityError: duplicate key value violates unique constraint
"auth_user_pkey" DETAIL: Key (id)=(1) already exists.
If you need to specify such values, reset the sequence afterward to avoid
reusing a value that’s already in the table. The sqlsequencereset
management command generates the SQL statements to do that.
Test database templates¶
You can use the TEST['TEMPLATE']
setting to specify
a template (e.g. 'template0'
) from which to create a test database.
Speeding up test execution with non-durable settings¶
You can speed up test execution times by configuring PostgreSQL to be non-durable.
Warning
This is dangerous: it will make your database more susceptible to data loss or corruption in the case of a server crash or power loss. Only use this on a development machine where you can easily restore the entire contents of all databases in the cluster.
MariaDB notes¶
Django supports MariaDB 10.5 and higher.
To use MariaDB, use the MySQL backend, which is shared between the two. See the MySQL notes for more details.
MySQL notes¶
Version support¶
Django supports MySQL 8.0.11 and higher.
Django’s inspectdb
feature uses the information_schema
database, which
contains detailed data on all database schemas.
Django expects the database to support Unicode (UTF-8 encoding) and delegates to it the task of enforcing transactions and referential integrity. It is important to be aware of the fact that the two latter ones aren’t actually enforced by MySQL when using the MyISAM storage engine, see the next section.
Storage engines¶
MySQL has several storage engines. You can change the default storage engine in the server configuration.
MySQL’s default storage engine is InnoDB. This engine is fully transactional
and supports foreign key references. It’s the recommended choice. However, the
InnoDB autoincrement counter is lost on a MySQL restart because it does not
remember the AUTO_INCREMENT
value, instead recreating it as “max(id)+1”.
This may result in an inadvertent reuse of AutoField
values.
The main drawbacks of MyISAM are that it doesn’t support transactions or enforce foreign-key constraints.
MySQL DB API Drivers¶
MySQL has a couple drivers that implement the Python Database API described in PEP 249:
mysqlclient is a native driver. It’s the recommended choice.
MySQL Connector/Python is a pure Python driver from Oracle that does not require the MySQL client library or any Python modules outside the standard library.
In addition to a DB API driver, Django needs an adapter to access the database drivers from its ORM. Django provides an adapter for mysqlclient while MySQL Connector/Python includes its own.
mysqlclient¶
Django requires mysqlclient 1.4.3 or later.
MySQL Connector/Python¶
MySQL Connector/Python is available from the download page. The Django adapter is available in versions 1.1.X and later. It may not support the most recent releases of Django.
Time zone definitions¶
If you plan on using Django’s timezone support, use mysql_tzinfo_to_sql to load time zone tables into the MySQL database. This needs to be done just once for your MySQL server, not per database.
Creating your database¶
You can create your database using the command-line tools and this SQL:
CREATE DATABASE <dbname> CHARACTER SET utf8mb4;
This ensures all tables and columns will use UTF-8 by default.
Collation settings¶
The collation setting for a column controls the order in which data is sorted
as well as what strings compare as equal. You can specify the db_collation
parameter to set the collation name of the column for
CharField
and
TextField
.
The collation can also be set on a database-wide level and per-table. This is documented thoroughly in the MySQL documentation. In such cases, you must set the collation by directly manipulating the database settings or tables. Django doesn’t provide an API to change them.
By default, with a UTF-8 database, MySQL will use the
utf8mb4_0900_ai_ci
collation. This results in all string equality
comparisons being done in a case-insensitive manner. That is, "Fred"
and
"freD"
are considered equal at the database level. If you have a unique
constraint on a field, it would be illegal to try to insert both "aa"
and
"AA"
into the same column, since they compare as equal (and, hence,
non-unique) with the default collation. If you want case-sensitive comparisons
on a particular column or table, change the column or table to use the
utf8mb4_0900_as_cs
collation.
Please note that according to MySQL Unicode Character Sets, comparisons for
the utf8mb4_general_ci
collation are faster, but slightly less correct,
than comparisons for utf8mb4_unicode_ci
. If this is acceptable for your
application, you should use utf8mb4_general_ci
because it is faster. If
this is not acceptable (for example, if you require German dictionary order),
use utf8mb4_unicode_ci
because it is more accurate.
Warning
Model formsets validate unique fields in a case-sensitive manner. Thus when
using a case-insensitive collation, a formset with unique field values that
differ only by case will pass validation, but upon calling save()
, an
IntegrityError
will be raised.
Connecting to the database¶
Refer to the settings documentation.
Connection settings are used in this order:
In other words, if you set the name of the database in OPTIONS
,
this will take precedence over NAME
, which would override
anything in a MySQL option file.
Here’s a sample configuration which uses a MySQL option file:
# settings.py
DATABASES = {
"default": {
"ENGINE": "django.db.backends.mysql",
"OPTIONS": {
"read_default_file": "/path/to/my.cnf",
},
}
}
# my.cnf
[client]
database = NAME
user = USER
password = PASSWORD
default-character-set = utf8mb4
Several other MySQLdb connection options may be useful, such as ssl
,
init_command
, and sql_mode
.
Setting sql_mode
¶
The default value of the sql_mode
option contains STRICT_TRANS_TABLES
.
That option escalates warnings into errors when data are truncated upon
insertion, so Django highly recommends activating a strict mode for MySQL to
prevent data loss (either STRICT_TRANS_TABLES
or STRICT_ALL_TABLES
).
If you need to customize the SQL mode, you can set the sql_mode
variable
like other MySQL options: either in a config file or with the entry
'init_command': "SET sql_mode='STRICT_TRANS_TABLES'"
in the
OPTIONS
part of your database configuration in DATABASES
.
Isolation level¶
When running concurrent loads, database transactions from different sessions
(say, separate threads handling different requests) may interact with each
other. These interactions are affected by each session’s transaction isolation
level. You can set a connection’s isolation level with an
'isolation_level'
entry in the OPTIONS
part of your database
configuration in DATABASES
. Valid values for
this entry are the four standard isolation levels:
'read uncommitted'
'read committed'
'repeatable read'
'serializable'
or None
to use the server’s configured isolation level. However, Django
works best with and defaults to read committed rather than MySQL’s default,
repeatable read. Data loss is possible with repeatable read. In particular,
you may see cases where get_or_create()
will raise an IntegrityError
but the object won’t appear in
a subsequent get()
call.
Creating your tables¶
When Django generates the schema, it doesn’t specify a storage engine, so tables will be created with whatever default storage engine your database server is configured for. The easiest solution is to set your database server’s default storage engine to the desired engine.
If you’re using a hosting service and can’t change your server’s default storage engine, you have a couple of options.
After the tables are created, execute an
ALTER TABLE
statement to convert a table to a new storage engine (such as InnoDB):ALTER TABLE <tablename> ENGINE=INNODB;
This can be tedious if you have a lot of tables.
Another option is to use the
init_command
option for MySQLdb prior to creating your tables:"OPTIONS": { "init_command": "SET default_storage_engine=INNODB", }
This sets the default storage engine upon connecting to the database. After your tables have been created, you should remove this option as it adds a query that is only needed during table creation to each database connection.
Table names¶
There are known issues in even the latest versions of MySQL that can cause the
case of a table name to be altered when certain SQL statements are executed
under certain conditions. It is recommended that you use lowercase table
names, if possible, to avoid any problems that might arise from this behavior.
Django uses lowercase table names when it auto-generates table names from
models, so this is mainly a consideration if you are overriding the table name
via the db_table
parameter.
Savepoints¶
Both the Django ORM and MySQL (when using the InnoDB storage engine) support database savepoints.
If you use the MyISAM storage engine please be aware of the fact that you will receive database-generated errors if you try to use the savepoint-related methods of the transactions API. The reason for this is that detecting the storage engine of a MySQL database/table is an expensive operation so it was decided it isn’t worth to dynamically convert these methods in no-op’s based in the results of such detection.
Notes on specific fields¶
Character fields¶
Any fields that are stored with VARCHAR
column types may have their
max_length
restricted to 255 characters if you are using unique=True
for the field. This affects CharField
,
SlugField
. See the MySQL documentation for more
details.
TextField
limitations¶
MySQL can index only the first N chars of a BLOB
or TEXT
column. Since
TextField
doesn’t have a defined length, you can’t mark it as
unique=True
. MySQL will report: “BLOB/TEXT column ‘<db_column>’ used in key
specification without a key length”.
Fractional seconds support for Time and DateTime fields¶
MySQL can store fractional seconds, provided that the column definition
includes a fractional indication (e.g. DATETIME(6)
).
Django will not upgrade existing columns to include fractional seconds if the database server supports it. If you want to enable them on an existing database, it’s up to you to either manually update the column on the target database, by executing a command like:
ALTER TABLE `your_table` MODIFY `your_datetime_column` DATETIME(6)
or using a RunSQL
operation in a
data migration.
TIMESTAMP
columns¶
If you are using a legacy database that contains TIMESTAMP
columns, you must
set USE_TZ = False
to avoid data corruption.
inspectdb
maps these columns to
DateTimeField
and if you enable timezone support,
both MySQL and Django will attempt to convert the values from UTC to local time.
Row locking with QuerySet.select_for_update()
¶
MySQL and MariaDB do not support some options to the SELECT ... FOR UPDATE
statement. If select_for_update()
is used with an unsupported option, then
a NotSupportedError
is raised.
Option |
MariaDB |
MySQL |
---|---|---|
|
X (≥10.6) |
X |
|
X |
X |
|
X |
|
|
When using select_for_update()
on MySQL, make sure you filter a queryset
against at least a set of fields contained in unique constraints or only
against fields covered by indexes. Otherwise, an exclusive write lock will be
acquired over the full table for the duration of the transaction.
Automatic typecasting can cause unexpected results¶
When performing a query on a string type, but with an integer value, MySQL will
coerce the types of all values in the table to an integer before performing the
comparison. If your table contains the values 'abc'
, 'def'
and you
query for WHERE mycolumn=0
, both rows will match. Similarly, WHERE mycolumn=1
will match the value 'abc1'
. Therefore, string type fields included in Django
will always cast the value to a string before using it in a query.
If you implement custom model fields that inherit from
Field
directly, are overriding
get_prep_value()
, or use
RawSQL
,
extra()
, or
raw()
, you should ensure that you perform
appropriate typecasting.
SQLite notes¶
Django supports SQLite 3.31.0 and later.
SQLite provides an excellent development alternative for applications that are predominantly read-only or require a smaller installation footprint. As with all database servers, though, there are some differences that are specific to SQLite that you should be aware of.
Substring matching and case sensitivity¶
For all SQLite versions, there is some slightly counterintuitive behavior when
attempting to match some types of strings. These are triggered when using the
iexact
or contains
filters in Querysets. The behavior
splits into two cases:
1. For substring matching, all matches are done case-insensitively. That is a
filter such as filter(name__contains="aa")
will match a name of "Aabb"
.
2. For strings containing characters outside the ASCII range, all exact string
matches are performed case-sensitively, even when the case-insensitive options
are passed into the query. So the iexact
filter will behave exactly
the same as the exact
filter in these cases.
Some possible workarounds for this are documented at sqlite.org, but they aren’t utilized by the default SQLite backend in Django, as incorporating them would be fairly difficult to do robustly. Thus, Django exposes the default SQLite behavior and you should be aware of this when doing case-insensitive or substring filtering.
Decimal handling¶
SQLite has no real decimal internal type. Decimal values are internally
converted to the REAL
data type (8-byte IEEE floating point number), as
explained in the SQLite datatypes documentation, so they don’t support
correctly-rounded decimal floating point arithmetic.
“Database is locked” errors¶
SQLite is meant to be a lightweight database, and thus can’t support a high
level of concurrency. OperationalError: database is locked
errors indicate
that your application is experiencing more concurrency than sqlite
can
handle in default configuration. This error means that one thread or process has
an exclusive lock on the database connection and another thread timed out
waiting for the lock the be released.
Python’s SQLite wrapper has
a default timeout value that determines how long the second thread is allowed to
wait on the lock before it times out and raises the OperationalError: database
is locked
error.
If you’re getting this error, you can solve it by:
Switching to another database backend. At a certain point SQLite becomes too “lite” for real-world applications, and these sorts of concurrency errors indicate you’ve reached that point.
Rewriting your code to reduce concurrency and ensure that database transactions are short-lived.
Increase the default timeout value by setting the
timeout
database option:"OPTIONS": { # ... "timeout": 20, # ... }
This will make SQLite wait a bit longer before throwing “database is locked” errors; it won’t really do anything to solve them.
Transactions behavior¶
SQLite supports three transaction modes: DEFERRED
, IMMEDIATE
, and
EXCLUSIVE
.
The default is DEFERRED
. If you need to use a different mode, set it in the
OPTIONS
part of your database configuration in
DATABASES
, for example:
"OPTIONS": {
# ...
"transaction_mode": "IMMEDIATE",
# ...
}
To make sure your transactions wait until timeout
before raising “Database
is Locked”, change the transaction mode to IMMEDIATE
.
For the best performance with IMMEDIATE
and EXCLUSIVE
, transactions
should be as short as possible. This might be hard to guarantee for all of your
views so the usage of ATOMIC_REQUESTS
is
discouraged in this case.
For more information see Transactions in SQLite.
QuerySet.select_for_update()
not supported¶
SQLite does not support the SELECT ... FOR UPDATE
syntax. Calling it will
have no effect.
Isolation when using QuerySet.iterator()
¶
There are special considerations described in Isolation In SQLite when
modifying a table while iterating over it using QuerySet.iterator()
. If
a row is added, changed, or deleted within the loop, then that row may or may
not appear, or may appear twice, in subsequent results fetched from the
iterator. Your code must handle this.
Enabling JSON1 extension on SQLite¶
To use JSONField
on SQLite, you need to enable the
JSON1 extension on Python’s sqlite3
library. If the extension is
not enabled on your installation, a system error (fields.E180
) will be
raised.
To enable the JSON1 extension you can follow the instruction on the wiki page.
Note
The JSON1 extension is enabled by default on SQLite 3.38+.
Setting pragma options¶
Pragma options can be set upon connection by using the init_command
in
the OPTIONS
part of your database configuration in
DATABASES
. The example below shows how to enable extra durability of
synchronous writes and change the cache_size
:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
# ...
"OPTIONS": {
"init_command": "PRAGMA synchronous=3; PRAGMA cache_size=2000;",
},
}
}
Oracle notes¶
Django supports Oracle Database Server versions 19c and higher. Version 2.3.0 or higher of the oracledb Python driver is required.
In order for the python manage.py migrate
command to work, your Oracle
database user must have privileges to run the following commands:
CREATE TABLE
CREATE SEQUENCE
CREATE PROCEDURE
CREATE TRIGGER
To run a project’s test suite, the user usually needs these additional privileges:
CREATE USER
ALTER USER
DROP USER
CREATE TABLESPACE
DROP TABLESPACE
CREATE SESSION WITH ADMIN OPTION
CREATE TABLE WITH ADMIN OPTION
CREATE SEQUENCE WITH ADMIN OPTION
CREATE PROCEDURE WITH ADMIN OPTION
CREATE TRIGGER WITH ADMIN OPTION
While the RESOURCE
role has the required CREATE TABLE
,
CREATE SEQUENCE
, CREATE PROCEDURE
, and CREATE TRIGGER
privileges,
and a user granted RESOURCE WITH ADMIN OPTION
can grant RESOURCE
, such
a user cannot grant the individual privileges (e.g. CREATE TABLE
), and thus
RESOURCE WITH ADMIN OPTION
is not usually sufficient for running tests.
Some test suites also create views or materialized views; to run these, the
user also needs CREATE VIEW WITH ADMIN OPTION
and
CREATE MATERIALIZED VIEW WITH ADMIN OPTION
privileges. In particular, this
is needed for Django’s own test suite.
All of these privileges are included in the DBA role, which is appropriate for use on a private developer’s database.
The Oracle database backend uses the SYS.DBMS_LOB
and SYS.DBMS_RANDOM
packages, so your user will require execute permissions on it. It’s normally
accessible to all users by default, but in case it is not, you’ll need to grant
permissions like so:
GRANT EXECUTE ON SYS.DBMS_LOB TO user;
GRANT EXECUTE ON SYS.DBMS_RANDOM TO user;
Connecting to the database¶
To connect using the service name of your Oracle database, your settings.py
file should look something like this:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.oracle",
"NAME": "xe",
"USER": "a_user",
"PASSWORD": "a_password",
"HOST": "",
"PORT": "",
}
}
In this case, you should leave both HOST
and PORT
empty.
However, if you don’t use a tnsnames.ora
file or a similar naming method
and want to connect using the SID (“xe” in this example), then fill in both
HOST
and PORT
like so:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.oracle",
"NAME": "xe",
"USER": "a_user",
"PASSWORD": "a_password",
"HOST": "dbprod01ned.mycompany.com",
"PORT": "1540",
}
}
You should either supply both HOST
and PORT
, or leave
both as empty strings. Django will use a different connect descriptor depending
on that choice.
Full DSN and Easy Connect¶
A Full DSN or Easy Connect string can be used in NAME
if both
HOST
and PORT
are empty. This format is required when
using RAC or pluggable databases without tnsnames.ora
, for example.
Example of an Easy Connect string:
"NAME": "localhost:1521/orclpdb1"
Example of a full DSN string:
"NAME": (
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(PORT=1521))"
"(CONNECT_DATA=(SERVICE_NAME=orclpdb1)))"
)
Connection pool¶
To use a connection pool with oracledb, set "pool"
to True
in the
OPTIONS
part of your database configuration. This uses the driver’s
create_pool() default values:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.oracle",
# ...
"OPTIONS": {
"pool": True,
},
},
}
To pass custom parameters to the driver’s create_pool() function, you can
alternatively set "pool"
to be a dict:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.oracle",
# ...
"OPTIONS": {
"pool": {
"min": 1,
"max": 10,
# ...
}
},
},
}
Threaded option¶
If you plan to run Django in a multithreaded environment (e.g. Apache using the
default MPM module on any modern operating system), then you must set
the threaded
option of your Oracle database configuration to True
:
"OPTIONS": {
"threaded": True,
}
Failure to do this may result in crashes and other odd behavior.
INSERT … RETURNING INTO¶
By default, the Oracle backend uses a RETURNING INTO
clause to efficiently
retrieve the value of an AutoField
when inserting new rows. This behavior
may result in a DatabaseError
in certain unusual setups, such as when
inserting into a remote table, or into a view with an INSTEAD OF
trigger.
The RETURNING INTO
clause can be disabled by setting the
use_returning_into
option of the database configuration to False
:
"OPTIONS": {
"use_returning_into": False,
}
In this case, the Oracle backend will use a separate SELECT
query to
retrieve AutoField
values.
Naming issues¶
Oracle imposes a name length limit of 30 characters. To accommodate this, the backend truncates database identifiers to fit, replacing the final four characters of the truncated name with a repeatable MD5 hash value. Additionally, the backend turns database identifiers to all-uppercase.
To prevent these transformations (this is usually required only when dealing
with legacy databases or accessing tables which belong to other users), use
a quoted name as the value for db_table
:
class LegacyModel(models.Model):
class Meta:
db_table = '"name_left_in_lowercase"'
class ForeignModel(models.Model):
class Meta:
db_table = '"OTHER_USER"."NAME_ONLY_SEEMS_OVER_30"'
Quoted names can also be used with Django’s other supported database backends; except for Oracle, however, the quotes have no effect.
When running migrate
, an ORA-06552
error may be encountered if
certain Oracle keywords are used as the name of a model field or the
value of a db_column
option. Django quotes all identifiers used
in queries to prevent most such problems, but this error can still
occur when an Oracle datatype is used as a column name. In
particular, take care to avoid using the names date
,
timestamp
, number
or float
as a field name.
NULL and empty strings¶
Django generally prefers to use the empty string (''
) rather than
NULL
, but Oracle treats both identically. To get around this, the
Oracle backend ignores an explicit null
option on fields that
have the empty string as a possible value and generates DDL as if
null=True
. When fetching from the database, it is assumed that
a NULL
value in one of these fields really means the empty
string, and the data is silently converted to reflect this assumption.
TextField
limitations¶
The Oracle backend stores TextFields
as NCLOB
columns. Oracle imposes
some limitations on the usage of such LOB columns in general:
LOB columns may not be used as primary keys.
LOB columns may not be used in indexes.
LOB columns may not be used in a
SELECT DISTINCT
list. This means that attempting to use theQuerySet.distinct
method on a model that includesTextField
columns will result in anORA-00932
error when run against Oracle. As a workaround, use theQuerySet.defer
method in conjunction withdistinct()
to preventTextField
columns from being included in theSELECT DISTINCT
list.
Subclassing the built-in database backends¶
Django comes with built-in database backends. You may subclass an existing database backends to modify its behavior, features, or configuration.
Consider, for example, that you need to change a single database feature.
First, you have to create a new directory with a base
module in it. For
example:
mysite/
...
mydbengine/
__init__.py
base.py
The base.py
module must contain a class named DatabaseWrapper
that
subclasses an existing engine from the django.db.backends
module. Here’s an
example of subclassing the PostgreSQL engine to change a feature class
allows_group_by_selected_pks_on_model
:
from django.db.backends.postgresql import base, features
class DatabaseFeatures(features.DatabaseFeatures):
def allows_group_by_selected_pks_on_model(self, model):
return True
class DatabaseWrapper(base.DatabaseWrapper):
features_class = DatabaseFeatures
Finally, you must specify a DATABASE-ENGINE
in your settings.py
file:
DATABASES = {
"default": {
"ENGINE": "mydbengine",
# ...
},
}
You can see the current list of database engines by looking in django/db/backends.
Using a 3rd-party database backend¶
In addition to the officially supported databases, there are backends provided by 3rd parties that allow you to use other databases with Django:
The Django versions and ORM features supported by these unofficial backends vary considerably. Queries regarding the specific capabilities of these unofficial backends, along with any support queries, should be directed to the support channels provided by each 3rd party project.