Mechanizmy uwierzytelniania wbudowane w Django pokrywają większość powszechnych zastosowań, co nie oznacza że nie zdarzy się że domyślne ustawienia nie zaspokoją twoich potrzeb. Dostosowanie uwierzytelniania pod własne projekty wymaga wiedzy na temat tego które elementy dostarczonego rozwiązania są rozszerzalne lub zastępowalne. Ten dokument zawiera szczegóły dotyczące dostosowywania uwierzytelniania.
Backendy uwierzytelniania dostarczają rozszerzalny system wtedy, gdy nazwa użytkownika i hasło przechowywane z modelem użytkownika muszą być uwierzytelnione w innej usłudze niż domyślna Django.
Możesz nadać swoim modelom własne uprawnienia, które mogą być sprawdzane przez system uwierzytelniania Django.
Możesz rozszerzyć domyślny model User lub zastąpić go zupełnie zmienionym modelem.
Może się zdarzyć, że będziesz potrzebował wpiąć się w inne źródło uwierzytelniania – to znaczy, inne źródło nazw użytkownika i haseł lub metod uwierzytelniania.
Na przykład twoja firma może ma już uruchomione LDAP, które przechowuje nazwę użytkownika i hasło dla każdego pracownika. Byłoby mordęgą zarówno dla administratora sieci jak i samych użytkowników, jeśli mieliby oni oddzielne konta w LDAP i w aplikacjach opartych o Django.
Aby obsłużyć takie sytuacje ja ta, system uwierzytelniania Django pozwala ci wpiąć inne źródła uwierzytelniania. Możesz nadpisać domyślny oparty na bazie danych schemat Django lub możesz użyć domyślnego systemu w zestawie z innymi systemami.
Zobacz dokumentację backendów uwierzytelniania po informacje na temat backendów uwierzytelniania zawartych w Django.
Pod maską, Django zarządza listą „backendów uwierzytelniania”, którą sprawdza dla uwierzytelnienia. Kiedy ktoś wywołuje django.contrib.auth.authenticate()
– jak jest opisane w Jak zalogować użytkownika – Django próbuje uwierzytelnić przez wszystkie swoje backendy uwierzytelniania. Jeśli pierwsza metoda uwierzytelnienia zawiedzie, Django próbuję drugiej, i tak dalej, ąz wypróbuje wszystkie backendy.
Lista backendów uwierzytelniania do użycia jest wyspecyfikowana w ustawieniu AUTHENTICATION_BACKENDS
. Powinna być to lista nazw ścieżek Pythona, które wskazują na klasy Pythona, które wiedzą jak uwierzytelniać. Te klasy mogą być gdziekolwiek na twojej ścieżce Pythona.
Domyślnie AUTHENTICATION_BACKENDS
jest ustawione na:
['django.contrib.auth.backends.ModelBackend']
To podstawowy backend uwierzytelniający, który sprawdza bazę danych użytkowników Django i sprawdza wbudowane uprawnienia. Nie zawiera ochrony przeciwko atakom brute force przez żaden mechanizm ograniczania częstotliwości. Możesz albo zaimplementować swój własny mechanizm ograniczania częstotliwości we własnym backendzie auth lub użyć mechanizmów dostarczanych przez większość serwerów web.
Kolejność w AUTHENTICATION_BACKENDS
ma znaczenie, więc jeśli ta sama nazwa użytkownika i hasło są poprawne w wielu backendach, Django przestanie przetwarzać przy pierwszej udanej weryfikacji.
Jeśli backend zgłasza wyjątek PermissionDenied
, uwierzytelnienie nie powiedzie się w sposób natychmiastowy. Django nie będzie sprawdzało następnych backendów.
Informacja
Gdy użytkownik się uwierzytelnił, Django przechowuje w sesji użytkownika informację, który backend został użyty do jego uwierzytelnienia i używa ponownie tego samego backendu w czasie trwania sesji, kiedykolwiek potrzebny jest dostęp di uwierzytelnionego użytkownika. W praktyce oznacza to, że źródła uwierzytelnienia są cachowane dla sesji, więc jeśli zmienisz AUTHENTICATION_BACKENDS
, będziesz musiał wyczyścić dane o sesji, jeśli będziesz potrzebować zmusić użytkowników do ponownego uwierzytelnienia się inną metodą. Prostym sposobem, aby to zrobić, jest wykonanie po prostu Session.objects.all().delete()
.
Backend uwierzytalniania jest klasą, która implementuje dwie wymagane metody: get_user(user_id)
i authenticate(request, **credentials)
oraz zestaw związanych z prawami dostępu, opcjonalnych metod uwierzytelniających.
The get_user
method takes a user_id
– which could be a username,
database ID or whatever, but has to be the primary key of your user object –
and returns a user object or None
.
Metoda authenticate
przyjmuje argument request
i dane uwierzytelniające jako argumenty nazwane. W większości przypadków, będzie wyglądała dokładnie tak:
class MyBackend:
def authenticate(self, request, username=None, password=None):
# Check the username/password and return a user.
...
Ale może też autentykować token, w ten sposób:
class MyBackend:
def authenticate(self, request, token=None):
# Check the token and return a user.
...
Tak czy inaczej, metoda authenticate()
powinna zweryfikować dane uwierzytelniania które dostała. Jeśli dane są poprawne, metoda powinna zwrócić obiekt użytkownika powiązany z nimi; w przeciwnym razie powinna zwrócić None
.
request
to obiekt klasy HttpRequest
i może mieć wartość None
, jeżeli nie został podany do authenticate()
(które przekazuje go do back-endu).
Panel administracyjny Django jest ściśle związany z obiektem User Django. Najlepszym sposobem na to jest tworzenie obiektu User
Django dla każdego użytkownika, który istnieje dla twojego backendu (np. w twoim katalogu LDAP, twojej zewnętrznej bazie SQL itp.) Możesz albo napisać skrypt, który zrobi to za jednym razem lub twoja metoda authenticate
może zrobić to podczas pierwszego logowania się użytkownika.
Przykładowy backend, który autentykuje w oparciu o zmienne nazwę użytkownika i hasło określone w twoim pliku settings.py
i tworzy obiekt User
Django, w momencie, kiedy użytkownika autentykuje się po raz pierwszy:
from django.conf import settings
from django.contrib.auth.hashers import check_password
from django.contrib.auth.models import User
class SettingsBackend:
"""
Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.
Use the login name and a hash of the password. For example:
ADMIN_LOGIN = 'admin'
ADMIN_PASSWORD = 'pbkdf2_sha256$30000$Vo0VlMnkR4Bk$qEvtdyZRWTcOsCnI/oQ7fVOu1XAURIZYoOZ3iq8Dr4M='
"""
def authenticate(self, request, username=None, password=None):
login_valid = (settings.ADMIN_LOGIN == username)
pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
if login_valid and pwd_valid:
try:
user = User.objects.get(username=username)
except User.DoesNotExist:
# Create a new user. There's no need to set a password
# because only the password from settings.py is checked.
user = User(username=username)
user.is_staff = True
user.is_superuser = True
user.save()
return user
return None
def get_user(self, user_id):
try:
return User.objects.get(pk=user_id)
except User.DoesNotExist:
return None
Własne backendy uwierzytelniania mogą zawierać swoje własne reguły dostępu.
Model użytkownika przekaże sprawdzenie uprawnień (get_group_permissions()
, get_all_permissions()
, has_perm()
i has_module_perms()
) każdemu backendowi autentykacyjnemu, który implementuje te funkcje.
Prawa dostępu dane użytkownikowi będą nadzbiorem wszystkich praw zwróconych przez wszystkie backendy. To znaczy, że Django daje użytkownikowi prawo dostępu, które daje którykolwiek z backendów.
Gdy backend zgłosi wyjątek PermissionDenied
w has_perm()
lub has_module_perms()
, autoryzacja od razu zostanie zakończona niepowodzeniem i Django nie będzie sprawdzało kolejnych backendów.
Powyższy prosty backend mógłby mieć zaimplementowane prawa dostępu dla magicznego panelu administracyjnego całkiem prosto:
class SettingsBackend:
...
def has_perm(self, user_obj, perm, obj=None):
return user_obj.username == settings.ADMIN_LOGIN
Daje to pełne uprawnienia użytkownikowi, który otrzyma dostęp w powyższym przykładzie. Zwróć uwagę, że oprócz tych samych argumentów przekazywanych funkcjom związanym z django.contrib.auth.models.User
, wszystkie funkcje backendu autentykacji przyjmują jako parametr obiekt użytkownika, którym może być użytkownik anonimowy.
Pełną implementację autoryzacji można znaleźć w klasie ModelBackend
w django/contrib/auth/backends.py. Jest to domyślny backend, który przeważnie odpytuje tabelę auth_permission
. Jeśli chciałbyś uzyskać własne zachowanie w tylko części API backendu, możesz skorzystać z dziedziczenia w Pythonie i stworzyć podklasę ModelBackend
zamiast implementować pełne API we własnym backendzie.
Użytkownik anonimowy to taki, który nie jest uwierzytelniony, np. nie przedstawił poprawnych danych uwierzytelniających. Nie musi to koniecznie oznaczać, że nie jest upoważniony do robienia niczego. Na najbardziej podstawowym poziomie, większość stron upoważnia anonimowych użytkowników do przeglądania większości strony a wiele pozwala anonimom pisać komentarze itd.
Framework upoważnień Django nie ma miejsca na przechowanie upoważnień dla anonimowych użytkowników. Jednakże obiekt użytkownika przekazywany do backendu autentykacji może być obiektem django.contrib.auth.models.AnonymousUser
, co pozwala backendowi wskazać własne zachowanie uwierzytelnienia dla użytkowników anonimowych. Jest to szczególnie przydatne dla autorów aplikacji wielokrotnego użycia, którzy mogą zlecić wszystkie pytania o uwierzytelnienie do backendu autentykacji, zamiast potrzebować ustawić, na przykład aby kontrolować dostęp anonimów.
Użytkownik nieaktywny to taki, którego pole is_active
jest ustawione na False
. Backendy autentykacji ModelBackend
i RemoteUserBackend
zabraniają tym użytkownikom się autentykować. Jeśli dostosowany model użytkownika nie ma pola is_active
, wszyscy użytkownicy będą mogli się uwierzytelniać.
Możesz użyć AllowAllUsersModelBackend
lub AllowAllUsersRemoteUserBackend
, jeśli chcesz pozwalać uwierzytelniać się nieaktywnym użytkownikom.
Wsparcie dla użytkowników anonimowych w systemie uprawnień pozwala na scenariusz, w którym użytkownicy anonimowi mają uprawnienia do robienia czegoś, podczas gdy nieaktywni uwierzytelnieni użytkownicy nie mają.
Nie zapomnij przetestować atrybutu is_active
użytkownika w swoich własnych backendowych metodach uprawnień.
Django’s permission framework has a foundation for object permissions, though
there is no implementation for it in the core. That means that checking for
object permissions will always return False
or an empty list (depending on
the check performed). An authentication backend will receive the keyword
parameters obj
and user_obj
for each object related authorization
method and can return the object level permission as appropriate.
To create custom permissions for a given model object, use the permissions
model Meta attribute.
This example Task
model creates two custom permissions, i.e., actions users
can or cannot do with Task
instances, specific to your application:
class Task(models.Model):
...
class Meta:
permissions = (
("change_task_status", "Can change the status of tasks"),
("close_task", "Can remove a task by setting its status as closed"),
)
The only thing this does is create those extra permissions when you run
manage.py migrate
(the function that creates permissions
is connected to the post_migrate
signal).
Your code is in charge of checking the value of these permissions when a user
is trying to access the functionality provided by the application (changing the
status of tasks or closing tasks.) Continuing the above example, the following
checks if a user may close tasks:
user.has_perm('app.close_task')
User
model¶There are two ways to extend the default
User
model without substituting your own
model. If the changes you need are purely behavioral, and don’t require any
change to what is stored in the database, you can create a proxy model based on User
. This
allows for any of the features offered by proxy models including default
ordering, custom managers, or custom model methods.
If you wish to store information related to User
, you can use a
OneToOneField
to a model containing the fields for
additional information. This one-to-one model is often called a profile model,
as it might store non-auth related information about a site user. For example
you might create an Employee model:
from django.contrib.auth.models import User
class Employee(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
department = models.CharField(max_length=100)
Assuming an existing Employee Fred Smith who has both a User and Employee model, you can access the related information using Django’s standard related model conventions:
>>> u = User.objects.get(username='fsmith')
>>> freds_department = u.employee.department
To add a profile model’s fields to the user page in the admin, define an
InlineModelAdmin
(for this example, we’ll use a
StackedInline
) in your app’s admin.py
and
add it to a UserAdmin
class which is registered with the
User
class:
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.models import User
from my_user_profile_app.models import Employee
# Define an inline admin descriptor for Employee model
# which acts a bit like a singleton
class EmployeeInline(admin.StackedInline):
model = Employee
can_delete = False
verbose_name_plural = 'employee'
# Define a new User admin
class UserAdmin(BaseUserAdmin):
inlines = (EmployeeInline,)
# Re-register UserAdmin
admin.site.unregister(User)
admin.site.register(User, UserAdmin)
These profile models are not special in any way - they are just Django models
that happen to have a one-to-one link with a user model. As such, they aren’t
auto created when a user is created, but
a django.db.models.signals.post_save
could be used to create or update
related models as appropriate.
Using related models results in additional queries or joins to retrieve the related data. Depending on your needs, a custom user model that includes the related fields may be your better option, however, existing relations to the default user model within your project’s apps may justify the extra database load.
User
model¶Some kinds of projects may have authentication requirements for which Django’s
built-in User
model is not always
appropriate. For instance, on some sites it makes more sense to use an email
address as your identification token instead of a username.
Django allows you to override the default user model by providing a value for
the AUTH_USER_MODEL
setting that references a custom model:
AUTH_USER_MODEL = 'myapp.MyUser'
This dotted pair describes the name of the Django app (which must be in your
INSTALLED_APPS
), and the name of the Django model that you wish to
use as your user model.
If you’re starting a new project, it’s highly recommended to set up a custom
user model, even if the default User
model
is sufficient for you. This model behaves identically to the default user
model, but you’ll be able to customize it in the future if the need arises:
from django.contrib.auth.models import AbstractUser
class User(AbstractUser):
pass
Don’t forget to point AUTH_USER_MODEL
to it. Do this before creating
any migrations or running manage.py migrate
for the first time.
Also, register the model in the app’s admin.py
:
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from .models import User
admin.site.register(User, UserAdmin)
Changing AUTH_USER_MODEL
after you’ve created database tables is
significantly more difficult since it affects foreign keys and many-to-many
relationships, for example.
This change can’t be done automatically and requires manually fixing your schema, moving your data from the old user table, and possibly manually reapplying some migrations. See #25313 for an outline of the steps.
Due to limitations of Django’s dynamic dependency feature for swappable
models, the model referenced by AUTH_USER_MODEL
must be created in
the first migration of its app (usually called 0001_initial
); otherwise,
you’ll have dependency issues.
In addition, you may run into a CircularDependencyError
when running your
migrations as Django won’t be able to automatically break the dependency loop
due to the dynamic dependency. If you see this error, you should break the loop
by moving the models depended on by your user model into a second migration.
(You can try making two normal models that have a ForeignKey
to each other
and seeing how makemigrations
resolves that circular dependency if you want
to see how it’s usually done.)
AUTH_USER_MODEL
¶Reusable apps shouldn’t implement a custom user model. A project may use many
apps, and two reusable apps that implemented a custom user model couldn’t be
used together. If you need to store per user information in your app, use
a ForeignKey
or
OneToOneField
to settings.AUTH_USER_MODEL
as described below.
User
model¶If you reference User
directly (for
example, by referring to it in a foreign key), your code will not work in
projects where the AUTH_USER_MODEL
setting has been changed to a
different user model.
get_user_model
()[źródło]¶Instead of referring to User
directly,
you should reference the user model using
django.contrib.auth.get_user_model()
. This method will return the
currently active user model – the custom user model if one is specified, or
User
otherwise.
When you define a foreign key or many-to-many relations to the user model,
you should specify the custom model using the AUTH_USER_MODEL
setting. For example:
from django.conf import settings
from django.db import models
class Article(models.Model):
author = models.ForeignKey(
settings.AUTH_USER_MODEL,
on_delete=models.CASCADE,
)
When connecting to signals sent by the user model, you should specify
the custom model using the AUTH_USER_MODEL
setting. For example:
from django.conf import settings
from django.db.models.signals import post_save
def post_save_receiver(sender, instance, created, **kwargs):
pass
post_save.connect(post_save_receiver, sender=settings.AUTH_USER_MODEL)
Generally speaking, it’s easiest to refer to the user model with the
AUTH_USER_MODEL
setting in code that’s executed at import time,
however, it’s also possible to call get_user_model()
while Django
is importing models, so you could use
models.ForeignKey(get_user_model(), ...)
.
If your app is tested with multiple user models, using
@override_settings(AUTH_USER_MODEL=...)
for example, and you cache the
result of get_user_model()
in a module-level variable, you may need to
listen to the setting_changed
signal to clear
the cache. For example:
from django.apps import apps
from django.contrib.auth import get_user_model
from django.core.signals import setting_changed
from django.dispatch import receiver
@receiver(setting_changed)
def user_model_swapped(**kwargs):
if kwargs['setting'] == 'AUTH_USER_MODEL':
apps.clear_cache()
from myapp import some_module
some_module.UserModel = get_user_model()
Model design considerations
Think carefully before handling information not directly related to authentication in your custom user model.
It may be better to store app-specific user information in a model that has a relation with the user model. That allows each app to specify its own user data requirements without risking conflicts with other apps. On the other hand, queries to retrieve this related information will involve a database join, which may have an effect on performance.
Django expects your custom user model to meet some minimum requirements.
If you use the default authentication backend, then your model must have a single unique field that can be used for identification purposes. This can be a username, an email address, or any other unique attribute. A non-unique username field is allowed if you use a custom authentication backend that can support it.
The easiest way to construct a compliant custom user model is to inherit from
AbstractBaseUser
.
AbstractBaseUser
provides the core
implementation of a user model, including hashed passwords and tokenized
password resets. You must then provide some key implementation details:
models.
CustomUser
¶USERNAME_FIELD
¶A string describing the name of the field on the user model that is
used as the unique identifier. This will usually be a username of some
kind, but it can also be an email address, or any other unique
identifier. The field must be unique (i.e., have unique=True
set
in its definition), unless you use a custom authentication backend that
can support non-unique usernames.
In the following example, the field identifier
is used
as the identifying field:
class MyUser(AbstractBaseUser):
identifier = models.CharField(max_length=40, unique=True)
...
USERNAME_FIELD = 'identifier'
EMAIL_FIELD
¶A string describing the name of the email field on the User
model.
This value is returned by
get_email_field_name()
.
REQUIRED_FIELDS
¶A list of the field names that will be prompted for when creating a
user via the createsuperuser
management command. The user
will be prompted to supply a value for each of these fields. It must
include any field for which blank
is
False
or undefined and may include additional fields you want
prompted for when a user is created interactively.
REQUIRED_FIELDS
has no effect in other parts of Django, like
creating a user in the admin.
For example, here is the partial definition for a user model that defines two required fields - a date of birth and height:
class MyUser(AbstractBaseUser):
...
date_of_birth = models.DateField()
height = models.FloatField()
...
REQUIRED_FIELDS = ['date_of_birth', 'height']
Informacja
REQUIRED_FIELDS
must contain all required fields on your user
model, but should not contain the USERNAME_FIELD
or
password
as these fields will always be prompted for.
is_active
¶A boolean attribute that indicates whether the user is considered
„active”. This attribute is provided as an attribute on
AbstractBaseUser
defaulting to True
. How you choose to
implement it will depend on the details of your chosen auth backends.
See the documentation of the is_active attribute on the built-in
user model
for details.
get_full_name
()¶Optional. A longer formal identifier for the user such as their full
name. If implemented, this appears alongside the username in an
object’s history in django.contrib.admin
.
get_short_name
()¶Optional. A short, informal identifier for the user such as their
first name. If implemented, this replaces the username in the greeting
to the user in the header of django.contrib.admin
.
In older versions, subclasses are required to implement
get_short_name()
and get_full_name()
as AbstractBaseUser
has implementations that raise NotImplementedError
.
Importing AbstractBaseUser
AbstractBaseUser
and BaseUserManager
are importable from
django.contrib.auth.base_user
so that they can be imported without
including django.contrib.auth
in INSTALLED_APPS
.
The following attributes and methods are available on any subclass of
AbstractBaseUser
:
models.
AbstractBaseUser
¶get_username
()¶Returns the value of the field nominated by USERNAME_FIELD
.
clean
()¶Normalizes the username by calling normalize_username()
. If you
override this method, be sure to call super()
to retain the
normalization.
get_email_field_name
()¶Returns the name of the email field specified by the
EMAIL_FIELD
attribute. Defaults to
'email'
if EMAIL_FIELD
isn’t specified.
normalize_username
(username)¶Applies NFKC Unicode normalization to usernames so that visually identical characters with different Unicode code points are considered identical.
is_authenticated
¶Read-only attribute which is always True
(as opposed to
AnonymousUser.is_authenticated
which is always False
).
This is a way to tell if the user has been authenticated. This does not
imply any permissions and doesn’t check if the user is active or has
a valid session. Even though normally you will check this attribute on
request.user
to find out whether it has been populated by the
AuthenticationMiddleware
(representing the currently logged-in user), you should know this
attribute is True
for any User
instance.
is_anonymous
¶Read-only attribute which is always False
. This is a way of
differentiating User
and AnonymousUser
objects. Generally, you should prefer using
is_authenticated
to this attribute.
set_password
(raw_password)¶Sets the user’s password to the given raw string, taking care of the
password hashing. Doesn’t save the
AbstractBaseUser
object.
When the raw_password is None
, the password will be set to an
unusable password, as if
set_unusable_password()
were used.
check_password
(raw_password)¶Returns True
if the given raw string is the correct password for
the user. (This takes care of the password hashing in making the
comparison.)
set_unusable_password
()¶Marks the user as having no password set. This isn’t the same as
having a blank string for a password.
check_password()
for this user
will never return True
. Doesn’t save the
AbstractBaseUser
object.
You may need this if authentication for your application takes place against an existing external source such as an LDAP directory.
has_usable_password
()¶Returns False
if
set_unusable_password()
has
been called for this user.
get_session_auth_hash
()¶Returns an HMAC of the password field. Used for Session invalidation on password change.
AbstractUser
subclasses AbstractBaseUser
:
models.
AbstractUser
¶clean
()¶Normalizes the email by calling
BaseUserManager.normalize_email()
. If you override this method,
be sure to call super()
to retain the normalization.
You should also define a custom manager for your user model. If your user model
defines username
, email
, is_staff
, is_active
, is_superuser
,
last_login
, and date_joined
fields the same as Django’s default user,
you can just install Django’s UserManager
;
however, if your user model defines different fields, you’ll need to define a
custom manager that extends BaseUserManager
providing two additional methods:
models.
CustomUserManager
¶create_user
(*username_field*, password=None, **other_fields)¶The prototype of create_user()
should accept the username field,
plus all required fields as arguments. For example, if your user model
uses email
as the username field, and has date_of_birth
as a
required field, then create_user
should be defined as:
def create_user(self, email, date_of_birth, password=None):
# create user here
...
create_superuser
(*username_field*, password, **other_fields)¶The prototype of create_superuser()
should accept the username
field, plus all required fields as arguments. For example, if your user
model uses email
as the username field, and has date_of_birth
as a required field, then create_superuser
should be defined as:
def create_superuser(self, email, date_of_birth, password):
# create superuser here
...
Unlike create_user()
, create_superuser()
must require the
caller to provide a password.
For a ForeignKey
in USERNAME_FIELD
or
REQUIRED_FIELDS
, these methods receive the value of the
to_field
(the primary_key
by default) of an existing instance.
BaseUserManager
provides the following
utility methods:
models.
BaseUserManager
¶normalize_email
(email)¶Normalizes email addresses by lowercasing the domain portion of the email address.
get_by_natural_key
(username)¶Retrieves a user instance using the contents of the field
nominated by USERNAME_FIELD
.
make_random_password
(length=10, allowed_chars='abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789')¶Returns a random password with the given length and given string of
allowed characters. Note that the default value of allowed_chars
doesn’t contain letters that can cause user confusion, including:
i
, l
, I
, and 1
(lowercase letter i, lowercase
letter L, uppercase letter i, and the number one)o
, O
, and 0
(lowercase letter o, uppercase letter o,
and zero)User
¶If you’re entirely happy with Django’s User
model and you just want to add some additional profile information, you could
simply subclass django.contrib.auth.models.AbstractUser
and add your
custom profile fields, although we’d recommend a separate model as described in
the „Model design considerations” note of Specifying a custom user model.
AbstractUser
provides the full implementation of the default
User
as an abstract model.
Django’s built-in forms and views make certain assumptions about the user model that they are working with.
The following forms are compatible with any subclass of
AbstractBaseUser
:
AuthenticationForm
: Uses the username
field specified by USERNAME_FIELD
.SetPasswordForm
PasswordChangeForm
AdminPasswordChangeForm
The following forms make assumptions about the user model and can be used as-is if those assumptions are met:
PasswordResetForm
: Assumes that the user
model has a field that stores the user’s email address with the name returned
by get_email_field_name()
(email
by
default) that can be used to identify the user and a boolean field named
is_active
to prevent password resets for inactive users.Finally, the following forms are tied to
User
and need to be rewritten or extended
to work with a custom user model:
If your custom user model is a simple subclass of AbstractUser
, then you
can extend these forms in this manner:
from django.contrib.auth.forms import UserCreationForm
from myapp.models import CustomUser
class CustomUserCreationForm(UserCreationForm):
class Meta(UserCreationForm.Meta):
model = CustomUser
fields = UserCreationForm.Meta.fields + ('custom_field',)
django.contrib.admin
¶If you want your custom user model to also work with the admin, your user model must define some additional attributes and methods. These methods allow the admin to control access of the user to admin content:
models.
CustomUser
is_staff
¶Returns True
if the user is allowed to have access to the admin site.
is_active
¶Returns True
if the user account is currently active.
has_perm(perm, obj=None):
Returns True
if the user has the named permission. If obj
is
provided, the permission needs to be checked against a specific object
instance.
has_module_perms(app_label):
Returns True
if the user has permission to access models in
the given app.
You will also need to register your custom user model with the admin. If
your custom user model extends django.contrib.auth.models.AbstractUser
,
you can use Django’s existing django.contrib.auth.admin.UserAdmin
class. However, if your user model extends
AbstractBaseUser
, you’ll need to define
a custom ModelAdmin
class. It may be possible to subclass the default
django.contrib.auth.admin.UserAdmin
; however, you’ll need to
override any of the definitions that refer to fields on
django.contrib.auth.models.AbstractUser
that aren’t on your
custom user class.
To make it easy to include Django’s permission framework into your own user
class, Django provides PermissionsMixin
.
This is an abstract model you can include in the class hierarchy for your user
model, giving you all the methods and database fields necessary to support
Django’s permission model.
PermissionsMixin
provides the following
methods and attributes:
models.
PermissionsMixin
¶is_superuser
¶Boolean. Designates that this user has all permissions without explicitly assigning them.
get_group_permissions
(obj=None)¶Returns a set of permission strings that the user has, through their groups.
If obj
is passed in, only returns the group permissions for
this specific object.
get_all_permissions
(obj=None)¶Returns a set of permission strings that the user has, both through group and user permissions.
If obj
is passed in, only returns the permissions for this
specific object.
has_perm
(perm, obj=None)¶Returns True
if the user has the specified permission, where
perm
is in the format "<app label>.<permission codename>"
(see
permissions). If User.is_active
and is_superuser
are both True
, this method always
returns True
.
If obj
is passed in, this method won’t check for a permission for
the model, but for this specific object.
has_perms
(perm_list, obj=None)¶Returns True
if the user has each of the specified permissions,
where each perm is in the format
"<app label>.<permission codename>"
. If User.is_active
and
is_superuser
are both True
, this method always
returns True
.
If obj
is passed in, this method won’t check for permissions for
the model, but for the specific object.
has_module_perms
(package_name)¶Returns True
if the user has any permissions in the given package
(the Django app label). If User.is_active
and
is_superuser
are both True
, this method always
returns True
.
One limitation of custom user models is that installing a custom user model
will break any proxy model extending User
.
Proxy models must be based on a concrete base class; by defining a custom user
model, you remove the ability of Django to reliably identify the base class.
If your project uses proxy models, you must either modify the proxy to extend
the user model that’s in use in your project, or merge your proxy’s behavior
into your User
subclass.
Here is an example of an admin-compliant custom user app. This user model uses
an email address as the username, and has a required date of birth; it
provides no permission checking, beyond a simple admin
flag on the user
account. This model would be compatible with all the built-in auth forms and
views, except for the user creation forms. This example illustrates how most of
the components work together, but is not intended to be copied directly into
projects for production use.
This code would all live in a models.py
file for a custom
authentication app:
from django.db import models
from django.contrib.auth.models import (
BaseUserManager, AbstractBaseUser
)
class MyUserManager(BaseUserManager):
def create_user(self, email, date_of_birth, password=None):
"""
Creates and saves a User with the given email, date of
birth and password.
"""
if not email:
raise ValueError('Users must have an email address')
user = self.model(
email=self.normalize_email(email),
date_of_birth=date_of_birth,
)
user.set_password(password)
user.save(using=self._db)
return user
def create_superuser(self, email, date_of_birth, password):
"""
Creates and saves a superuser with the given email, date of
birth and password.
"""
user = self.create_user(
email,
password=password,
date_of_birth=date_of_birth,
)
user.is_admin = True
user.save(using=self._db)
return user
class MyUser(AbstractBaseUser):
email = models.EmailField(
verbose_name='email address',
max_length=255,
unique=True,
)
date_of_birth = models.DateField()
is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)
objects = MyUserManager()
USERNAME_FIELD = 'email'
REQUIRED_FIELDS = ['date_of_birth']
def __str__(self):
return self.email
def has_perm(self, perm, obj=None):
"Does the user have a specific permission?"
# Simplest possible answer: Yes, always
return True
def has_module_perms(self, app_label):
"Does the user have permissions to view the app `app_label`?"
# Simplest possible answer: Yes, always
return True
@property
def is_staff(self):
"Is the user a member of staff?"
# Simplest possible answer: All admins are staff
return self.is_admin
Then, to register this custom user model with Django’s admin, the following
code would be required in the app’s admin.py
file:
from django import forms
from django.contrib import admin
from django.contrib.auth.models import Group
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.forms import ReadOnlyPasswordHashField
from customauth.models import MyUser
class UserCreationForm(forms.ModelForm):
"""A form for creating new users. Includes all the required
fields, plus a repeated password."""
password1 = forms.CharField(label='Password', widget=forms.PasswordInput)
password2 = forms.CharField(label='Password confirmation', widget=forms.PasswordInput)
class Meta:
model = MyUser
fields = ('email', 'date_of_birth')
def clean_password2(self):
# Check that the two password entries match
password1 = self.cleaned_data.get("password1")
password2 = self.cleaned_data.get("password2")
if password1 and password2 and password1 != password2:
raise forms.ValidationError("Passwords don't match")
return password2
def save(self, commit=True):
# Save the provided password in hashed format
user = super().save(commit=False)
user.set_password(self.cleaned_data["password1"])
if commit:
user.save()
return user
class UserChangeForm(forms.ModelForm):
"""A form for updating users. Includes all the fields on
the user, but replaces the password field with admin's
password hash display field.
"""
password = ReadOnlyPasswordHashField()
class Meta:
model = MyUser
fields = ('email', 'password', 'date_of_birth', 'is_active', 'is_admin')
def clean_password(self):
# Regardless of what the user provides, return the initial value.
# This is done here, rather than on the field, because the
# field does not have access to the initial value
return self.initial["password"]
class UserAdmin(BaseUserAdmin):
# The forms to add and change user instances
form = UserChangeForm
add_form = UserCreationForm
# The fields to be used in displaying the User model.
# These override the definitions on the base UserAdmin
# that reference specific fields on auth.User.
list_display = ('email', 'date_of_birth', 'is_admin')
list_filter = ('is_admin',)
fieldsets = (
(None, {'fields': ('email', 'password')}),
('Personal info', {'fields': ('date_of_birth',)}),
('Permissions', {'fields': ('is_admin',)}),
)
# add_fieldsets is not a standard ModelAdmin attribute. UserAdmin
# overrides get_fieldsets to use this attribute when creating a user.
add_fieldsets = (
(None, {
'classes': ('wide',),
'fields': ('email', 'date_of_birth', 'password1', 'password2')}
),
)
search_fields = ('email',)
ordering = ('email',)
filter_horizontal = ()
# Now register the new UserAdmin...
admin.site.register(MyUser, UserAdmin)
# ... and, since we're not using Django's built-in permissions,
# unregister the Group model from admin.
admin.site.unregister(Group)
Finally, specify the custom model as the default user model for your project
using the AUTH_USER_MODEL
setting in your settings.py
:
AUTH_USER_MODEL = 'customauth.MyUser'
mar 30, 2019